Liu-Hy's picture
Add files using upload-large-folder tool
1a37a63 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Ovarian_Cancer"
cohort = "GSE126133"
# Input paths
in_trait_dir = "../DATA/GEO/Ovarian_Cancer"
in_cohort_dir = "../DATA/GEO/Ovarian_Cancer/GSE126133"
# Output paths
out_data_file = "./output/preprocess/3/Ovarian_Cancer/GSE126133.csv"
out_gene_data_file = "./output/preprocess/3/Ovarian_Cancer/gene_data/GSE126133.csv"
out_clinical_data_file = "./output/preprocess/3/Ovarian_Cancer/clinical_data/GSE126133.csv"
json_path = "./output/preprocess/3/Ovarian_Cancer/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Based on background info, this dataset contains cell marker data from ovarian cancer cells
# and appears to be a gene expression study, not miRNA or methylation
is_gene_available = True
# 2.1 Data Availability
# Trait (ovarian cancer) is recorded in field 1 "tissue: high-grade serous ovarian cancer (HGSOC)"
trait_row = 1
# No age information available in sample characteristics
age_row = None
# No gender information available - patients with ovarian cancer are female
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if not isinstance(value, str):
return None
# Extract value after colon
value = value.split(': ')[1].strip().lower()
# Convert to binary - 1 for HGSOC
if 'high-grade serous ovarian cancer' in value or 'hgsoc' in value:
return 1
return 0
def convert_age(value):
# Not used since age not available
return None
def convert_gender(value):
# Not used since gender not available
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract Clinical Features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_df(selected_clinical)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# Observe ILMN_ prefixes in gene IDs which indicate Illumina probe IDs
# These need to be mapped to standard HGNC gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data using the provided helper function
gene_metadata = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview = preview_df(gene_metadata, n=10)
print("\nGene annotation columns and sample values:")
print(preview)
# 1. The 'ID' column in gene annotation corresponds to Illumina probe IDs (ILMN_*) in gene expression data
# The 'Symbol' column contains gene symbols
prob_col = 'ID'
gene_col = 'Symbol'
# 2. Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col)
# 3. Convert probe-level data to gene-level expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Gene expression data comparing ovarian cancer cell lines (HEY, SKOV3) with prostate cancer cell line (PC3), examining miRNA effects on MET."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)