|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Pancreatic_Cancer" |
|
cohort = "GSE130563" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Pancreatic_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Pancreatic_Cancer/GSE130563" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Pancreatic_Cancer/GSE130563.csv" |
|
out_gene_data_file = "./output/preprocess/3/Pancreatic_Cancer/gene_data/GSE130563.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Pancreatic_Cancer/clinical_data/GSE130563.csv" |
|
json_path = "./output/preprocess/3/Pancreatic_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
trait_row = 0 |
|
age_row = 4 |
|
gender_row = 1 |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert diagnosis info to binary: 1 for PDAC, 0 for non-cancer controls""" |
|
if value is None or 'diagnosis:' not in value: |
|
return None |
|
diagnosis = value.split('diagnosis:')[1].strip().lower() |
|
if 'pancreatic ductal adenocarcinoma' in diagnosis: |
|
return 1 |
|
elif 'chronic pancreatitis' in diagnosis: |
|
return None |
|
else: |
|
return 0 |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age to continuous value""" |
|
if value is None or 'age:' not in value: |
|
return None |
|
try: |
|
return float(value.split('age:')[1].strip()) |
|
except: |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert sex to binary: 0 for female, 1 for male""" |
|
if value is None or 'Sex:' not in value: |
|
return None |
|
sex = value.split('Sex:')[1].strip().upper() |
|
if sex == 'F': |
|
return 0 |
|
elif sex == 'M': |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical_df = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of extracted clinical features:") |
|
print(preview_df(selected_clinical_df)) |
|
|
|
|
|
selected_clinical_df.to_csv(out_clinical_data_file) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
import gzip |
|
start_line = "!platform_table_begin" |
|
end_line = "!platform_table_end" |
|
found_data = False |
|
print("Sample of annotation data from SOFT file:") |
|
with gzip.open(soft_file, 'rt', encoding='utf-8') as f: |
|
for line in f: |
|
if start_line in line: |
|
found_data = True |
|
|
|
next(f) |
|
|
|
for _ in range(5): |
|
print(next(f).strip()) |
|
break |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("\nGene annotation columns and example values:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
print("\nAvailable columns:") |
|
print(gene_annotation.columns.tolist()) |
|
|
|
|
|
import gzip |
|
|
|
|
|
found_symbols = False |
|
gene_symbols = [] |
|
|
|
with gzip.open(soft_file, 'rt') as f: |
|
for line in f: |
|
|
|
if "!Platform_table_begin" in line: |
|
headers = next(f).strip().split('\t') |
|
|
|
symbol_cols = [i for i, h in enumerate(headers) |
|
if 'symbol' in h.lower() or 'gene' in h.lower()] |
|
if symbol_cols: |
|
found_symbols = True |
|
|
|
for line in f: |
|
if "!Platform_table_end" in line: |
|
break |
|
values = line.strip().split('\t') |
|
for col in symbol_cols: |
|
if col < len(values): |
|
gene_symbols.append(values[col]) |
|
break |
|
|
|
if found_symbols and len(gene_symbols) > 0: |
|
|
|
unique_probes = gene_annotation['ID'].unique() |
|
mapping_df = pd.DataFrame({ |
|
'ID': unique_probes, |
|
'Gene': gene_symbols[:len(unique_probes)] |
|
}) |
|
else: |
|
|
|
|
|
mapping_df = pd.DataFrame({ |
|
'ID': gene_annotation['ID'], |
|
'Gene': gene_annotation['ID'] |
|
}) |
|
print("WARNING: No gene symbols found. Using probe IDs as temporary mapping.") |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_df) |
|
|
|
print("Shape of gene expression data after mapping:", gene_data.shape) |
|
print("\nPreview of mapped gene expression data:") |
|
print(gene_data.head()) |
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
print("WARNING: Using probe IDs instead of gene symbols due to failed mapping") |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("\nPre-linking data shapes:") |
|
print("Clinical data shape:", selected_clinical.shape) |
|
print("Gene data shape:", gene_data.shape) |
|
print("\nClinical data preview:") |
|
print(selected_clinical.head()) |
|
|
|
|
|
gene_data_t = gene_data.T |
|
linked_data = pd.concat([selected_clinical.T, gene_data_t], axis=1) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_biased, |
|
df=linked_data, |
|
note="Gene expression data from pancreatic cancer study. Using probe IDs instead of gene symbols." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |