Liu-Hy's picture
Add files using upload-large-folder tool
0733067 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Parkinsons_Disease"
cohort = "GSE30335"
# Input paths
in_trait_dir = "../DATA/GEO/Parkinsons_Disease"
in_cohort_dir = "../DATA/GEO/Parkinsons_Disease/GSE30335"
# Output paths
out_data_file = "./output/preprocess/3/Parkinsons_Disease/GSE30335.csv"
out_gene_data_file = "./output/preprocess/3/Parkinsons_Disease/gene_data/GSE30335.csv"
out_clinical_data_file = "./output/preprocess/3/Parkinsons_Disease/clinical_data/GSE30335.csv"
json_path = "./output/preprocess/3/Parkinsons_Disease/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
is_gene_available = True # Based on background info mentioning "blood gene expression"
# 2. Variable Availability and Data Type Conversion
trait_row = 0 # 'occupation' field contains trait status
age_row = None # Age not provided in sample characteristics
gender_row = None # Gender is constant (all male) based on background info
def convert_trait(value: str) -> int:
"""Convert occupation to binary PD risk (1=farmworker, 0=manual worker)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'farmworker' in value:
return 1 # Higher PD risk group
elif 'manual worker' in value:
return 0 # Lower PD risk group
return None
convert_age = None # No age data available
convert_gender = None # No gender data needed (all male)
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Based on the row IDs in the data, these are Affymetrix probe set IDs (_at suffix), not gene symbols
# Format 'XXXXXX_at' or 'XXXXXX_s_at' is characteristic of Affymetrix microarray probes
# The identifiers need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# 1. ID in genetic_data matches ID in gene_annotation
# Gene Symbol is stored in 'Gene Symbol' column
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# 2. Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# 3. Save the gene data
gene_data.to_csv(out_gene_data_file)
print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(preview_df(gene_data))
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Contains gene expression data with metabolic rate (inferred from multicentric occurrence-free survival days) measurements"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)