Liu-Hy's picture
Add files using upload-large-folder tool
0733067 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Pheochromocytoma_and_Paraganglioma"
cohort = "GSE64957"
# Input paths
in_trait_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma"
in_cohort_dir = "../DATA/GEO/Pheochromocytoma_and_Paraganglioma/GSE64957"
# Output paths
out_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/GSE64957.csv"
out_gene_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/gene_data/GSE64957.csv"
out_clinical_data_file = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/clinical_data/GSE64957.csv"
json_path = "./output/preprocess/3/Pheochromocytoma_and_Paraganglioma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data from Affymetrix Human Genome U133 Plus 2.0 Array
is_gene_available = True
# 2.1 Variable Availability
# Trait (pheo vs non-pheo) can be inferred from row 0 (disease field)
trait_row = 0
# Age not available
age_row = None
# Gender not available
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert disease value to binary: Pheochromocytoma (1) vs non-Pheochromocytoma (0)"""
if not isinstance(value, str):
return None
value = value.lower().split(': ')[-1]
if 'pheochromocytoma' in value:
return 1
elif "conn's syndrome" in value:
return 0
return None
def convert_age(value):
return None
def convert_gender(value):
return None
# 3. Save initial metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# The IDs appear to be numerical probe identifiers (e.g. 7892501, 7892502)
# rather than human gene symbols (e.g. TP53, BRCA1)
# These are likely probe IDs from a microarray platform that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# In gene_annotation, 'ID' column stores probe identifiers matching genetic_data indices
# 'gene_assignment' column stores gene symbol information in format "gene symbol // gene title // ..."
# Create mapping dataframe from probe ID to gene symbol
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
# Extract gene symbols from gene assignment string
mapping_data['Gene'] = mapping_data['Gene'].str.split(' // ').str[0]
# Apply gene mapping to convert probe measurements to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few gene symbols:")
print(list(gene_data.index)[:10])
print("\nFirst few values:")
print(gene_data.head())
# First check the clinical data processing
print("Clinical Data Preview:")
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print(selected_clinical_df.head())
print("\nClinical Data Shape:", selected_clinical_df.shape)
print("\nClinical Data Column Names:", selected_clinical_df.columns)
print("\nClinical Data Info:")
print(selected_clinical_df.info())
# If clinical data is valid, proceed with processing
if not selected_clinical_df.empty and not selected_clinical_df.isna().all().all():
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
print("\nGenetic Data Shape after normalization:", genetic_data.shape)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
print("\nLinked Data Shape:", linked_data.shape)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and saving metadata
note = "Gene expression data from Affymetrix array with disease status (pheochromocytoma vs Conn's syndrome)"
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
print("Error: Clinical data processing failed - empty or invalid data")
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=True,
df=pd.DataFrame(),
note="Clinical data processing failed - empty or invalid data"
)