|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Post-Traumatic_Stress_Disorder" |
|
cohort = "GSE64814" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder" |
|
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE64814" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE64814.csv" |
|
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE64814.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE64814.csv" |
|
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 1 |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert PTSD status to binary""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.split(': ')[-1].lower() |
|
if 'case' in value: |
|
return 1 |
|
elif value == 'control': |
|
return 0 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Placeholder function since age is not available""" |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Placeholder function since gender is not available""" |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None) |
|
|
|
|
|
clinical_features = geo_select_clinical_features(clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
|
|
print("Preview of clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("Data structure and head:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape:", genetic_data.shape) |
|
|
|
print("\nFirst 20 row IDs (gene/probe identifiers):") |
|
print(list(genetic_data.index)[:20]) |
|
|
|
|
|
print("\nFirst 5 column names:") |
|
print(list(genetic_data.columns)[:5]) |
|
|
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Column names:") |
|
print(gene_annotation.columns) |
|
|
|
print("\nPreview of gene annotation data:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
|
|
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_data) |
|
|
|
|
|
print("Gene data shape:", gene_data.shape) |
|
print("\nGene data preview:") |
|
print(gene_data.head()) |
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
|
|
|
|
genetic_data = normalize_gene_symbols_in_index(gene_data) |
|
genetic_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |