Liu-Hy's picture
Add files using upload-large-folder tool
5a96bf0 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Post-Traumatic_Stress_Disorder"
cohort = "GSE64814"
# Input paths
in_trait_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder"
in_cohort_dir = "../DATA/GEO/Post-Traumatic_Stress_Disorder/GSE64814"
# Output paths
out_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/GSE64814.csv"
out_gene_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/gene_data/GSE64814.csv"
out_clinical_data_file = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/clinical_data/GSE64814.csv"
json_path = "./output/preprocess/3/Post-Traumatic_Stress_Disorder/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# From background info, this is a study of gene networks in PTSD
# and the samples are from peripheral blood leukocytes, suggesting gene expression data
is_gene_available = True
# 2.1 Row identifiers for clinical variables
trait_row = 1 # PTSD status is in row 1 under 'condition'
age_row = None # Age not available in sample characteristics
gender_row = None # Gender not available in sample characteristics
# 2.2 Data type conversion functions
def convert_trait(value: str) -> int:
"""Convert PTSD status to binary"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1].lower()
if 'case' in value: # Both 'case (PTSD)' and 'case (PTSD risk)' are cases
return 1
elif value == 'control':
return 0
return None
def convert_age(value: str) -> float:
"""Placeholder function since age is not available"""
return None
def convert_gender(value: str) -> int:
"""Placeholder function since gender is not available"""
return None
# 3. Save metadata about dataset usability
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Extract clinical features since trait data is available
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Looking at the format of gene identifiers - they appear to be probe IDs (numeric format)
# rather than standard human gene symbols (which are usually alphanumeric).
# This indicates we need to map these probe IDs to gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Display column names and preview data
print("Column names:")
print(gene_annotation.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_annotation))
# Extract gene mapping from annotation
# 'ID' contains probe IDs matching the gene expression data
# 'gene_assignment' contains the gene symbols amidst other info
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply mapping to convert probe expression to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview transformed data
print("Gene data shape:", gene_data.shape)
print("\nGene data preview:")
print(gene_data.head())
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(gene_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Dataset contains subcutaneous adipose tissue gene expression data from PCOS patients and controls. The gender feature is biased (all female) and was removed."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)