|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Prostate_Cancer" |
|
cohort = "GSE206793" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Prostate_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Prostate_Cancer/GSE206793" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Prostate_Cancer/GSE206793.csv" |
|
out_gene_data_file = "./output/preprocess/3/Prostate_Cancer/gene_data/GSE206793.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Prostate_Cancer/clinical_data/GSE206793.csv" |
|
json_path = "./output/preprocess/3/Prostate_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data( |
|
matrix_file, |
|
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'], |
|
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1'] |
|
) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = False |
|
|
|
|
|
|
|
trait_row = 0 |
|
def convert_trait(value): |
|
if not value or ":" not in value: |
|
return None |
|
value = value.split(":")[1].strip().lower() |
|
if "healthy" in value: |
|
return 0 |
|
elif "prostate cancer" in value: |
|
return 1 |
|
return None |
|
|
|
|
|
age_row = 1 |
|
def convert_age(value): |
|
if not value or ":" not in value: |
|
return None |
|
try: |
|
age = float(value.split(":")[1].strip()) |
|
return age |
|
except: |
|
return None |
|
|
|
|
|
gender_row = None |
|
def convert_gender(value): |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_df = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait, |
|
age_row, convert_age, |
|
gender_row, convert_gender) |
|
print("Clinical data preview:") |
|
print(preview_df(clinical_df)) |
|
clinical_df.to_csv(out_clinical_data_file) |