Liu-Hy's picture
Add files using upload-large-folder tool
d5514d2 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Retinoblastoma"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/3/Retinoblastoma/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Retinoblastoma/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Retinoblastoma/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Retinoblastoma/cohort_info.json"
# 1. Look for directories related to retinoblastoma (eye/ocular cancer)
available_cohorts = os.listdir(tcga_root_dir)
relevant_dirs = [d for d in available_cohorts if any(term in d.lower() for term in ['eye', 'ocular', 'retina', 'retinoblastoma'])]
# If no exact match found, use ocular melanoma as closest available eye cancer data
if len(relevant_dirs) == 0:
# Record unavailability and exit
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=False,
is_trait_available=False
)
# Since we need to skip this trait, return empty dataframes to avoid errors in subsequent code
clinical_df = pd.DataFrame()
genetic_df = pd.DataFrame()
else:
# Select the most relevant directory (first match)
selected_dir = relevant_dirs[0]
cohort_dir = os.path.join(tcga_root_dir, selected_dir)
# 2. Get file paths for clinical and genetic data
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
# 3. Load the data files
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
# 4. Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Record data availability
is_gene_available = len(genetic_df.columns) > 0
is_trait_available = len(clinical_df.columns) > 0
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Identify candidate demographic columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']
# Get list of TCGA cohort directories
cohorts = os.listdir(tcga_root_dir)
# Find any clinical files containing Retinoblastoma data
clinical_df = None
for cohort in cohorts:
cohort_dir = os.path.join(tcga_root_dir, cohort)
if os.path.isdir(cohort_dir):
try:
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
temp_df = pd.read_csv(clinical_file_path, index_col=0)
if any('retinoblastoma' in str(col).lower() for col in temp_df.columns):
clinical_df = temp_df
break
except:
continue
if clinical_df is not None:
# Preview age columns
age_preview = {}
for col in candidate_age_cols:
if col in clinical_df.columns:
age_preview[col] = clinical_df[col].head().tolist()
print("Age columns preview:", age_preview)
# Preview gender columns
gender_preview = {}
for col in candidate_gender_cols:
if col in clinical_df.columns:
gender_preview[col] = clinical_df[col].head().tolist()
print("Gender columns preview:", gender_preview)
else:
print("No clinical data found containing Retinoblastoma information")