|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Rheumatoid_Arthritis" |
|
cohort = "GSE121894" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis" |
|
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE121894" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE121894.csv" |
|
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE121894.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE121894.csv" |
|
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 0 |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value): |
|
if not isinstance(value, str): |
|
return None |
|
value = value.lower().split(':')[-1].strip() |
|
if 'rheumatoid arthritis' in value: |
|
return 1 |
|
elif 'healthy control' in value: |
|
return 0 |
|
return None |
|
|
|
|
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None) |
|
|
|
|
|
clinical_df = geo_select_clinical_features(clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait) |
|
|
|
|
|
print("Clinical data preview:") |
|
print(preview_df(clinical_df)) |
|
clinical_df.to_csv(out_clinical_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Column names:", gene_metadata.columns.tolist()) |
|
print("\nFirst few rows preview:") |
|
print(preview_df(gene_metadata)) |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
print("\nFirst lines of raw SOFT file to locate gene symbol column:") |
|
with gzip.open(soft_file, 'rt', encoding='utf-8') as f: |
|
for i, line in enumerate(f): |
|
if not any(line.startswith(p) for p in ['^', '!', '#']): |
|
print(line.strip()) |
|
print("-"*80) |
|
if i > 5: |
|
break |
|
|
|
|
|
print("\nAll columns in gene metadata:") |
|
print(gene_metadata.columns.tolist()) |
|
print("\nFull preview of first row:") |
|
print(gene_metadata.iloc[0].to_dict()) |
|
|
|
|
|
gene_metadata['Gene_Symbol'] = gene_metadata['Description'].apply(lambda x: extract_human_gene_symbols(x)[0] if extract_human_gene_symbols(x) else None) |
|
|
|
|
|
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene_Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
print("\nShape of gene data after mapping:", gene_data.shape) |
|
print("\nPreview of gene data after mapping:") |
|
print(preview_df(gene_data)) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Study examining transcriptome profiles in rheumatoid arthritis." |
|
) |
|
|
|
|
|
if is_usable: |
|
linked_data.to_csv(out_data_file) |