|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Rheumatoid_Arthritis" |
|
cohort = "GSE42842" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis" |
|
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE42842" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE42842.csv" |
|
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE42842.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE42842.csv" |
|
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 2 |
|
|
|
age_row = None |
|
|
|
gender_row = 0 |
|
|
|
|
|
def convert_trait(x): |
|
"""Convert disease state to binary""" |
|
if not isinstance(x, str): |
|
return None |
|
value = x.split(': ')[1].lower() if ': ' in x else x.lower() |
|
if 'rheumatoid arthritis' in value: |
|
return 1 |
|
return None |
|
|
|
def convert_gender(x): |
|
"""Convert gender to binary (0=female, 1=male)""" |
|
if not isinstance(x, str): |
|
return None |
|
value = x.split(': ')[1].lower() if ': ' in x else x.lower() |
|
if value == 'f': |
|
return 0 |
|
elif value == 'm': |
|
return 1 |
|
return None |
|
|
|
convert_age = None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of selected clinical features:") |
|
print(preview_df(selected_clinical)) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene annotation preview:") |
|
print(preview_df(gene_annotation)) |
|
|
|
|
|
gene_cols = ['GENE', 'GENE_SYMBOL', 'GENE_NAME', 'REFSEQ', 'GB_ACC', 'UNIGENE_ID', 'ENSEMBL_ID'] |
|
has_gene_info = any(gene_annotation[col].notna().any() for col in gene_cols) |
|
|
|
if not has_gene_info: |
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=False, |
|
is_trait_available=True, |
|
note="Dataset lacks proper gene annotations - all gene identifier fields are empty" |
|
) |
|
|
|
print("\nWARNING: This dataset lacks proper gene annotations.") |
|
print("All gene identifier fields (GENE, GENE_SYMBOL, REFSEQ, etc.) are empty.") |
|
print("Stopping processing as gene mapping cannot be performed without annotations.") |
|
|
|
|
|
raise ValueError("Dataset lacks proper gene annotations") |