Liu-Hy's picture
Add files using upload-large-folder tool
d5514d2 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Rheumatoid_Arthritis"
cohort = "GSE42842"
# Input paths
in_trait_dir = "../DATA/GEO/Rheumatoid_Arthritis"
in_cohort_dir = "../DATA/GEO/Rheumatoid_Arthritis/GSE42842"
# Output paths
out_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/GSE42842.csv"
out_gene_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/gene_data/GSE42842.csv"
out_clinical_data_file = "./output/preprocess/3/Rheumatoid_Arthritis/clinical_data/GSE42842.csv"
json_path = "./output/preprocess/3/Rheumatoid_Arthritis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Since Series_overall_design mentions two color experiments, this is a gene expression microarray dataset
is_gene_available = True
# 2.1 Data Availability
# Feature 2 shows disease state, which indicates RA vs non-RA
trait_row = 2
# Age is not available in sample characteristics
age_row = None
# Gender is available in Feature 0
gender_row = 0
# 2.2 Data Type Conversion Functions
def convert_trait(x):
"""Convert disease state to binary"""
if not isinstance(x, str):
return None
value = x.split(': ')[1].lower() if ': ' in x else x.lower()
if 'rheumatoid arthritis' in value:
return 1
return None
def convert_gender(x):
"""Convert gender to binary (0=female, 1=male)"""
if not isinstance(x, str):
return None
value = x.split(': ')[1].lower() if ': ' in x else x.lower()
if value == 'f':
return 0
elif value == 'm':
return 1
return None
convert_age = None
# 3. Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The gene identifiers are just numerical indices (1,2,3...)
# They are not human gene symbols and need to be mapped
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file)
# Preview annotation data
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# Check if gene annotation data is usable by looking at gene-related columns
gene_cols = ['GENE', 'GENE_SYMBOL', 'GENE_NAME', 'REFSEQ', 'GB_ACC', 'UNIGENE_ID', 'ENSEMBL_ID']
has_gene_info = any(gene_annotation[col].notna().any() for col in gene_cols)
if not has_gene_info:
# Save metadata indicating this dataset is not usable
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=False, # Set to False since gene annotations are missing
is_trait_available=True,
note="Dataset lacks proper gene annotations - all gene identifier fields are empty"
)
print("\nWARNING: This dataset lacks proper gene annotations.")
print("All gene identifier fields (GENE, GENE_SYMBOL, REFSEQ, etc.) are empty.")
print("Stopping processing as gene mapping cannot be performed without annotations.")
# Exit further processing as dataset is not suitable
raise ValueError("Dataset lacks proper gene annotations")