Liu-Hy's picture
Add files using upload-large-folder tool
d5514d2 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Sarcoma"
cohort = "GSE118336"
# Input paths
in_trait_dir = "../DATA/GEO/Sarcoma"
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE118336"
# Output paths
out_data_file = "./output/preprocess/3/Sarcoma/GSE118336.csv"
out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE118336.csv"
out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE118336.csv"
json_path = "./output/preprocess/3/Sarcoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# This is human transcriptome array data which contains gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Row Identification
# Trait (Sarcoma): Can be determined from genotype in row 1
trait_row = 1
# Age/Gender: Not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert genotype to binary trait (presence of mutation)
FUSWT/WT (no mutation) -> 0
FUSWT/H517D or FUSH517D/H517D (has mutation) -> 1
"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip()
if 'FUSWT/WT' in value:
return 0
elif 'H517D' in value: # Either hetero or homo mutation
return 1
return None
def convert_age(value):
"""Placeholder since age data not available"""
return None
def convert_gender(value):
"""Placeholder since gender data not available"""
return None
# 3. Save Metadata
# Initial validation (is_final=False)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview = preview_df(clinical_df)
print("Preview of clinical data:", preview)
# Save clinical data
clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Review gene identifiers - these look like probe IDs from the Affymetrix Human Transcriptome Array 2.0 platform
# Based on format 'XXXXXXX_st' and high number of probes (70523)
# Need to map these probe IDs to human gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and values from annotation dataframe
print("Gene annotation DataFrame preview:")
print(preview_df(gene_annotation))
# Extract mapping between probe IDs and gene symbols
mapping_df = gene_annotation[['probeset_id', 'gene_assignment']]
mapping_df = mapping_df.rename(columns={
'probeset_id': 'ID',
'gene_assignment': 'Gene'
})
# Apply mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Normalize gene symbols to standardized format
gene_data = normalize_gene_symbols_in_index(gene_data)
# Preview processed gene data
print("Gene expression data preview:")
print(preview_df(gene_data))
print("\nShape:", gene_data.shape)
# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
print("Gene data shape after normalization:", gene_data.shape)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Load clinical data previously processed
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
print("\nClinical data shape:", selected_clinical_df.shape)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
print("\nLinked data shape:", linked_data.shape)
# 3. Handle missing values systematically
if trait in linked_data.columns:
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "This dataset contains gene expression data from myxoid liposarcoma samples, with metastasis status as the trait."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable and not biased
if is_usable and not trait_biased:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
# Handle case where clinical features were not properly extracted
note = "Failed to extract clinical trait information from sample characteristics."
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note=note
)