Liu-Hy's picture
Add files using upload-large-folder tool
d5514d2 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Sarcoma"
cohort = "GSE233860"
# Input paths
in_trait_dir = "../DATA/GEO/Sarcoma"
in_cohort_dir = "../DATA/GEO/Sarcoma/GSE233860"
# Output paths
out_data_file = "./output/preprocess/3/Sarcoma/GSE233860.csv"
out_gene_data_file = "./output/preprocess/3/Sarcoma/gene_data/GSE233860.csv"
out_clinical_data_file = "./output/preprocess/3/Sarcoma/clinical_data/GSE233860.csv"
json_path = "./output/preprocess/3/Sarcoma/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
print("Background Information:")
print(background_info)
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes - Series summary mentions "Gene expression quantification of PanCancer IO genes"
is_gene_available = True
# 2.1 Data Availability and Row Keys
trait_row = 0 # The 'outcome' data can be used for trait
age_row = None # Age not available
gender_row = None # Gender not available
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert outcome data to binary (SD/PD=0, PR=1)"""
if pd.isna(value):
return None
value = value.split(': ')[-1].strip()
# PR = Partial Response is positive outcome
# SD = Stable Disease and PD = Progressive Disease are negative outcomes
if value == 'PR':
return 1
elif value in ['SD', 'PD']:
return 0
return None
def convert_age(value):
return None # Not used since age data unavailable
def convert_gender(value):
return None # Not used since gender data unavailable
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(selected_clinical_df)
print("Preview of clinical data:")
print(preview)
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Get gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Examine data structure
print("Data structure and head:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
print("\nFirst 20 row IDs (gene/probe identifiers):")
print(list(genetic_data.index)[:20])
# Get a few column names to verify sample IDs
print("\nFirst 5 column names:")
print(list(genetic_data.columns)[:5])
# Review the gene identifiers
gene_ids = ['A2M', 'ABCF1', 'ACVR1C', 'ADAM12', 'ADGRE1', 'ADM', 'ADORA2A', 'AKT1', 'ALDOA', 'ALDOC', 'ANGPT1', 'ANGPT2', 'ANGPTL4', 'ANLN', 'APC', 'APH1B', 'API5', 'APLNR', 'APOE', 'APOL6']
# These look like standard human gene symbols (e.g. A2M, ABCF1, AKT1 etc.)
# No mapping needed
requires_gene_mapping = False
# Reload clinical data that was processed earlier
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 1. Normalize gene symbols
genetic_data = normalize_gene_symbols_in_index(genetic_data)
genetic_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, genetic_data)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and information saving
note = "Dataset contains gene expression data from paired tumor biopsies before and after treatment. Treatment outcome (PR vs SD/PD) is used as trait."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note=note
)
# 6. Save linked data only if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)