|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Schizophrenia" |
|
cohort = "GSE120342" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Schizophrenia" |
|
in_cohort_dir = "../DATA/GEO/Schizophrenia/GSE120342" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Schizophrenia/GSE120342.csv" |
|
out_gene_data_file = "./output/preprocess/3/Schizophrenia/gene_data/GSE120342.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Schizophrenia/clinical_data/GSE120342.csv" |
|
json_path = "./output/preprocess/3/Schizophrenia/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 0 |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value): |
|
"""Convert disease state to binary (0=control, 1=SCZ)""" |
|
if not value or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
if 'scz' in value: |
|
return 1 |
|
elif 'control' in value: |
|
return 0 |
|
return None |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait |
|
) |
|
|
|
|
|
preview = preview_df(selected_clinical) |
|
print("Processed clinical data preview:", preview) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
if genetic_data.index[0].startswith('cg'): |
|
raise ValueError("This appears to be methylation data (CpG sites), not gene expression data") |
|
|
|
|
|
print("Data structure and head:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape:", genetic_data.shape) |
|
|
|
print("\nFirst 20 row IDs (gene/probe identifiers):") |
|
print(list(genetic_data.index)[:20]) |
|
|
|
|
|
print("\nFirst 5 column names:") |
|
print(list(genetic_data.columns)[:5]) |