|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Sickle_Cell_Anemia" |
|
cohort = "GSE84632" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Sickle_Cell_Anemia" |
|
in_cohort_dir = "../DATA/GEO/Sickle_Cell_Anemia/GSE84632" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/GSE84632.csv" |
|
out_gene_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/gene_data/GSE84632.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Sickle_Cell_Anemia/clinical_data/GSE84632.csv" |
|
json_path = "./output/preprocess/3/Sickle_Cell_Anemia/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
print("Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
is_gene_available = True |
|
|
|
|
|
trait_row = 2 |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value): |
|
"""Convert trait information to binary (0: Control, 1: Case)""" |
|
if value is None or ':' not in value: |
|
return None |
|
value = value.split(':')[1].strip().lower() |
|
if 'sickle cell disease' in value: |
|
return 1 |
|
return None |
|
|
|
def convert_age(value): |
|
"""Convert age to float""" |
|
return None |
|
|
|
def convert_gender(value): |
|
"""Convert gender to binary (0: Female, 1: Male)""" |
|
return None |
|
|
|
|
|
is_trait_available = trait_row is not None |
|
_ = validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available |
|
) |
|
|
|
|
|
if trait_row is not None: |
|
selected_clinical = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
print("Preview of processed clinical data:") |
|
print(preview_df(selected_clinical)) |
|
|
|
|
|
selected_clinical.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("Data structure and head:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape:", genetic_data.shape) |
|
|
|
print("\nFirst 20 row IDs (gene/probe identifiers):") |
|
print(list(genetic_data.index)[:20]) |
|
|
|
|
|
print("\nFirst 5 column names:") |
|
print(list(genetic_data.columns)[:5]) |
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Gene annotation columns and first few rows:") |
|
for col in gene_annotation.columns: |
|
print(f"\n{col}:") |
|
print(list(gene_annotation[col])[:5]) |
|
|
|
platform_table = filter_content_by_prefix( |
|
soft_file_path, |
|
prefixes_a=['!Platform_table_begin', '!Platform_table_end'], |
|
unselect=True, |
|
source_type='file', |
|
return_df_a=True |
|
)[0] |
|
|
|
|
|
print("Platform table columns:") |
|
print(platform_table.columns) |
|
|
|
|
|
print("\nSample rows:") |
|
print(platform_table.head()) |
|
|
|
|
|
mapping_df = get_gene_mapping(platform_table, 'ID', 'gene_assignment') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
print("\nShape of gene expression data after mapping:") |
|
print(gene_data.shape) |
|
print("\nFirst few gene symbols:") |
|
print(list(gene_data.index)[:10]) |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
print("Gene annotation DataFrame preview:") |
|
print(preview_df(gene_annotation)) |