|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Stroke" |
|
cohort = "GSE125771" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Stroke" |
|
in_cohort_dir = "../DATA/GEO/Stroke/GSE125771" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Stroke/GSE125771.csv" |
|
out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE125771.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE125771.csv" |
|
json_path = "./output/preprocess/3/Stroke/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = None |
|
|
|
|
|
age_row = 3 |
|
|
|
|
|
gender_row = 2 |
|
|
|
|
|
def convert_trait(x): |
|
|
|
return None |
|
|
|
def convert_age(x): |
|
|
|
try: |
|
age = float(x.split(': ')[1]) |
|
return age |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
|
|
try: |
|
sex = x.split(': ')[1].strip() |
|
if sex == 'Female': |
|
return 0 |
|
elif sex == 'Male': |
|
return 1 |
|
return None |
|
except: |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=False |
|
) |
|
|
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene Annotation Preview (first 5 rows):") |
|
print(preview_df(gene_metadata)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping_cols = ['ID', 'gene_assignment'] |
|
gene_metadata = gene_metadata[mapping_cols] |
|
|
|
|
|
print(f"\nShape of gene annotation data: {gene_metadata.shape}") |
|
|
|
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='gene_assignment') |
|
|
|
|
|
gene_data = apply_gene_mapping(gene_data, mapping_data) |
|
|
|
|
|
print("Shape of mapped gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of mapped gene data:") |
|
print(gene_data.head()) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
linked_data = pd.DataFrame(index=gene_data.columns) |
|
linked_data[trait] = None |
|
|
|
|
|
linked_data = pd.concat([linked_data.T, gene_data]).T |
|
|
|
|
|
trait_biased = True |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=trait_biased, |
|
df=linked_data, |
|
note="Gene expression data available but no stroke phenotype information found in dataset." |
|
) |