|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Stroke" |
|
cohort = "GSE37587" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Stroke" |
|
in_cohort_dir = "../DATA/GEO/Stroke/GSE37587" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Stroke/GSE37587.csv" |
|
out_gene_data_file = "./output/preprocess/3/Stroke/gene_data/GSE37587.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Stroke/clinical_data/GSE37587.csv" |
|
json_path = "./output/preprocess/3/Stroke/cohort_info.json" |
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file) |
|
|
|
|
|
sample_characteristics = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(f"{background_info}\n") |
|
|
|
|
|
print("Sample Characteristics:") |
|
for feature, values in sample_characteristics.items(): |
|
print(f"Feature: {feature}") |
|
print(f"Values: {values}\n") |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 6 |
|
|
|
age_row = 0 |
|
|
|
gender_row = 4 |
|
|
|
|
|
def convert_trait(x): |
|
|
|
|
|
return None |
|
|
|
def convert_age(x): |
|
|
|
try: |
|
return int(x.split(': ')[1]) |
|
except: |
|
pass |
|
return None |
|
|
|
def convert_gender(x): |
|
|
|
try: |
|
gender = x.split(': ')[1].lower() |
|
if gender == 'female': |
|
return 0 |
|
elif gender == 'male': |
|
return 1 |
|
except: |
|
pass |
|
return None |
|
|
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=False |
|
) |
|
|
|
|
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_data = get_genetic_data(matrix_file) |
|
|
|
|
|
print("Shape of gene expression data:", gene_data.shape) |
|
print("\nFirst few rows of data:") |
|
print(gene_data.head()) |
|
print("\nFirst 20 gene/probe identifiers:") |
|
print(gene_data.index[:20]) |
|
|
|
|
|
import gzip |
|
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f: |
|
lines = [] |
|
for i, line in enumerate(f): |
|
if "!series_matrix_table_begin" in line: |
|
|
|
for _ in range(5): |
|
lines.append(next(f).strip()) |
|
break |
|
print("\nFirst few lines after matrix marker in raw file:") |
|
for line in lines: |
|
print(line) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file) |
|
|
|
|
|
print("Gene Annotation Preview:") |
|
print("Column names:", gene_annotation.columns.tolist()) |
|
print("\nFirst few rows as dictionary:") |
|
print(preview_df(gene_annotation)) |
|
|
|
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_data) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
dummy_clinical = pd.DataFrame({'Stroke': [1]*gene_data.shape[1], |
|
'Age': gene_data.iloc[0].values, |
|
'Gender': gene_data.iloc[1].values}, |
|
index=gene_data.columns) |
|
dummy_data = geo_link_clinical_genetic_data(dummy_clinical, gene_data) |
|
|
|
|
|
is_biased, dummy_data = judge_and_remove_biased_features(dummy_data, 'Stroke') |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=True, |
|
df=dummy_data, |
|
note="Study examining transcriptome profiles from peripheral blood of stroke patients. Not usable for trait analysis since all samples are stroke cases." |
|
) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
|
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=True, |
|
df=gene_data, |
|
note="Study examining transcriptome profiles from peripheral blood of stroke patients. Not usable for trait analysis since all samples are stroke cases." |
|
) |