|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Telomere_Length" |
|
cohort = "GSE80435" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Telomere_Length" |
|
in_cohort_dir = "../DATA/GEO/Telomere_Length/GSE80435" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Telomere_Length/GSE80435.csv" |
|
out_gene_data_file = "./output/preprocess/3/Telomere_Length/gene_data/GSE80435.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Telomere_Length/clinical_data/GSE80435.csv" |
|
json_path = "./output/preprocess/3/Telomere_Length/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nClinical Data Shape:", clinical_data.shape) |
|
print("\nFirst few rows of Clinical Data:") |
|
print(clinical_data.head()) |
|
|
|
print("\nSample Characteristics:") |
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
print("Please show complete sample characteristics dictionary") |
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
def convert_trait(x): |
|
if x is None: |
|
return None |
|
value = x.split(': ')[-1].strip() |
|
return float(value) |
|
|
|
def convert_age(x): |
|
if x is None: |
|
return None |
|
value = x.split(': ')[-1].strip() |
|
try: |
|
return float(value) |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
if x is None: |
|
return None |
|
value = x.split(': ')[-1].strip().lower() |
|
if 'female' in value: |
|
return 0 |
|
elif 'male' in value: |
|
return 1 |
|
return None |
|
|
|
|
|
is_trait_available = False |
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=is_trait_available) |
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nClinical Data Shape:", clinical_data.shape) |
|
print("\nFirst few rows of Clinical Data:") |
|
print(clinical_data.head()) |
|
|
|
print("\nSample Characteristics:") |
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("Data structure and head:") |
|
print(genetic_data.head()) |
|
|
|
print("\nShape:", genetic_data.shape) |
|
|
|
print("\nFirst 20 row IDs (gene/probe identifiers):") |
|
print(list(genetic_data.index)[:20]) |
|
|
|
|
|
print("\nFirst 5 column names:") |
|
print(list(genetic_data.columns)[:5]) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview = preview_df(gene_annotation) |
|
print("Gene annotation preview:") |
|
print(preview) |
|
|
|
prob_col = 'ID' |
|
gene_col = 'Symbol' |
|
|
|
|
|
gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, gene_mapping) |
|
|
|
|
|
print("Gene expression data after mapping:") |
|
print(gene_data.head()) |
|
print("\nShape:", gene_data.shape) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
print("\nGene data shape (normalized gene-level):", gene_data.shape) |
|
|
|
|
|
note = "Dataset contains gene expression data normalized to gene level using NCBI database, but lacks clinical trait data" |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=False, |
|
is_biased=False, |
|
df=gene_data, |
|
note=note |
|
) |