|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Thyroid_Cancer" |
|
cohort = "GSE151181" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Thyroid_Cancer" |
|
in_cohort_dir = "../DATA/GEO/Thyroid_Cancer/GSE151181" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Thyroid_Cancer/GSE151181.csv" |
|
out_gene_data_file = "./output/preprocess/3/Thyroid_Cancer/gene_data/GSE151181.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Thyroid_Cancer/clinical_data/GSE151181.csv" |
|
json_path = "./output/preprocess/3/Thyroid_Cancer/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
|
|
|
|
print("Dataset Background Information:") |
|
print(background_info) |
|
print("\nSample Characteristics:") |
|
for feature, values in unique_values_dict.items(): |
|
print(f"\n{feature}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> int: |
|
"""Convert tissue type to binary (0=normal, 1=tumor)""" |
|
if not isinstance(value, str): |
|
return None |
|
value = value.split(": ")[-1].lower() |
|
if "non-neoplastic" in value: |
|
return 0 |
|
elif any(x in value for x in ["tumor", "metastasis"]): |
|
return 1 |
|
return None |
|
|
|
def convert_age(value: str) -> float: |
|
"""Convert age to float""" |
|
return None |
|
|
|
def convert_gender(value: str) -> int: |
|
"""Convert gender to binary""" |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None)) |
|
|
|
|
|
clinical_features_df = geo_select_clinical_features(clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
|
|
print(preview_df(clinical_features_df)) |
|
|
|
|
|
clinical_features_df.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("Data preview:") |
|
print("\nColumn names:") |
|
print(list(genetic_data.columns)[:5]) |
|
print("\nFirst 5 rows:") |
|
print(genetic_data.head()) |
|
print("\nShape:", genetic_data.shape) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |
|
|
|
|
|
genetic_data.to_csv(out_gene_data_file) |
|
|
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_metadata = get_gene_annotation(soft_file_path, prefixes=['!Platform_table_begin']) |
|
|
|
|
|
gene_metadata = gene_metadata.rename(columns=lambda x: x.strip()) |
|
|
|
|
|
print("\nGene annotation columns preview:") |
|
print(gene_metadata.columns.tolist()) |
|
|
|
print("\nFirst few rows:") |
|
print(gene_metadata.head()) |
|
|
|
gene_metadata = get_gene_annotation(soft_file_path, prefixes=['^', '!', '#']) |
|
|
|
|
|
gene_metadata.columns = gene_metadata.columns.str.strip() |
|
|
|
|
|
preview = preview_df(gene_metadata, n=5) |
|
print("\nGene annotation preview:") |
|
for col, values in preview.items(): |
|
print(f"\n{col}:") |
|
print(values) |
|
|
|
is_gene_available = False |
|
|
|
|
|
validate_and_save_cohort_info( |
|
is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=(trait_row is not None) |
|
) |