Liu-Hy's picture
Add files using upload-large-folder tool
a35b997 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Thyroid_Cancer"
cohort = "GSE151181"
# Input paths
in_trait_dir = "../DATA/GEO/Thyroid_Cancer"
in_cohort_dir = "../DATA/GEO/Thyroid_Cancer/GSE151181"
# Output paths
out_data_file = "./output/preprocess/3/Thyroid_Cancer/GSE151181.csv"
out_gene_data_file = "./output/preprocess/3/Thyroid_Cancer/gene_data/GSE151181.csv"
out_clinical_data_file = "./output/preprocess/3/Thyroid_Cancer/clinical_data/GSE151181.csv"
json_path = "./output/preprocess/3/Thyroid_Cancer/cohort_info.json"
# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
print(f"\n{feature}:")
print(values)
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data as indicated by the dataset title
is_gene_available = True
# 2.1 Data Availability
# tissue type (row 1) indicates tumor vs normal tissue
trait_row = 1
# Age and gender not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert tissue type to binary (0=normal, 1=tumor)"""
if not isinstance(value, str):
return None
value = value.split(": ")[-1].lower()
if "non-neoplastic" in value:
return 0
elif any(x in value for x in ["tumor", "metastasis"]):
return 1
return None
def convert_age(value: str) -> float:
"""Convert age to float"""
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary"""
return None
# 3. Save metadata about dataset availability
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None))
# 4. Extract clinical features since trait_row is not None
clinical_features_df = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
print(preview_df(clinical_features_df))
# Save clinical data
clinical_features_df.to_csv(out_clinical_data_file)
# Extract genetic data matrix
genetic_data = get_genetic_data(matrix_file_path)
# Print first few rows with column names to examine data structure
print("Data preview:")
print("\nColumn names:")
print(list(genetic_data.columns)[:5])
print("\nFirst 5 rows:")
print(genetic_data.head())
print("\nShape:", genetic_data.shape)
# Verify this is gene expression data and check identifiers
is_gene_available = True
# Save updated metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# Save gene expression data
genetic_data.to_csv(out_gene_data_file)
# The IDs in the row index appear to be numeric identifiers (e.g. 23064070)
# rather than standard human gene symbols (e.g. BRCA1, TP53)
# These numeric IDs likely need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data with modified prefix filtering
gene_metadata = get_gene_annotation(soft_file_path, prefixes=['!Platform_table_begin'])
# Clean up column names by removing leading/trailing whitespace
gene_metadata = gene_metadata.rename(columns=lambda x: x.strip())
# Preview column names and first few values
print("\nGene annotation columns preview:")
print(gene_metadata.columns.tolist())
print("\nFirst few rows:")
print(gene_metadata.head())
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path, prefixes=['^', '!', '#'])
# Clean up any whitespace in column names
gene_metadata.columns = gene_metadata.columns.str.strip()
# Preview column names and first few values
preview = preview_df(gene_metadata, n=5)
print("\nGene annotation preview:")
for col, values in preview.items():
print(f"\n{col}:")
print(values)
# Update status since we determined this is a miRNA dataset without gene mapping
is_gene_available = False
# Save updated metadata indicating gene expression data is not available
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)