|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Underweight" |
|
cohort = "GSE131835" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Underweight" |
|
in_cohort_dir = "../DATA/GEO/Underweight/GSE131835" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Underweight/GSE131835.csv" |
|
out_gene_data_file = "./output/preprocess/3/Underweight/gene_data/GSE131835.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Underweight/clinical_data/GSE131835.csv" |
|
json_path = "./output/preprocess/3/Underweight/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nClinical Data Shape:", clinical_data.shape) |
|
print("\nFirst few rows of Clinical Data:") |
|
print(clinical_data.head()) |
|
|
|
print("\nSample Characteristics:") |
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
trait_row = 1 |
|
|
|
age_row = 3 |
|
|
|
gender_row = 2 |
|
|
|
|
|
def convert_trait(x): |
|
"""Convert group info to binary underweight status""" |
|
if not x or ':' not in x: |
|
return None |
|
value = x.split(':')[1].strip().upper() |
|
|
|
if 'CWL' in value: |
|
return 1 |
|
|
|
elif 'CWS' in value or 'CONTROL' in value: |
|
return 0 |
|
return None |
|
|
|
def convert_age(x): |
|
"""Convert age to continuous value""" |
|
if not x or ':' not in x: |
|
return None |
|
try: |
|
return float(x.split(':')[1].strip()) |
|
except: |
|
return None |
|
|
|
def convert_gender(x): |
|
"""Convert gender to binary (0=female, 1=male)""" |
|
if not x or ':' not in x: |
|
return None |
|
value = x.split(':')[1].strip().lower() |
|
if 'female' in value: |
|
return 0 |
|
elif 'male' in value: |
|
return 1 |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=trait_row is not None) |
|
|
|
|
|
if trait_row is not None: |
|
clinical_features = geo_select_clinical_features( |
|
clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender |
|
) |
|
|
|
|
|
preview_df(clinical_features) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe IDs:") |
|
print(list(genetic_data.index[:20])) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview = preview_df(gene_annotation) |
|
print("Gene annotation preview:") |
|
print(preview) |
|
|
|
|
|
|
|
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ORF') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, gene_mapping) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
print("\nGene data shape (normalized gene-level):", gene_data.shape) |
|
|
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Dataset contains gene expression data and clinical information from Type 1 Diabetes patients." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |