|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "Vitamin_D_Levels" |
|
cohort = "GSE34450" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/Vitamin_D_Levels" |
|
in_cohort_dir = "../DATA/GEO/Vitamin_D_Levels/GSE34450" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/Vitamin_D_Levels/GSE34450.csv" |
|
out_gene_data_file = "./output/preprocess/3/Vitamin_D_Levels/gene_data/GSE34450.csv" |
|
out_clinical_data_file = "./output/preprocess/3/Vitamin_D_Levels/clinical_data/GSE34450.csv" |
|
json_path = "./output/preprocess/3/Vitamin_D_Levels/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nClinical Data Shape:", clinical_data.shape) |
|
print("\nFirst few rows of Clinical Data:") |
|
print(clinical_data.head()) |
|
|
|
print("\nSample Characteristics:") |
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = 3 |
|
def convert_trait(x): |
|
if pd.isna(x): |
|
return None |
|
x = str(x).lower() |
|
if "serum 25-oh-d:" not in x: |
|
return None |
|
if "high" in x: |
|
return 2 |
|
elif "mid" in x: |
|
return 1 |
|
elif "low" in x: |
|
return 0 |
|
return None |
|
|
|
|
|
age_row = None |
|
def convert_age(x): |
|
return None |
|
|
|
|
|
gender_row = None |
|
def convert_gender(x): |
|
return None |
|
|
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=True) |
|
|
|
|
|
clinical_features = geo_select_clinical_features(clinical_df=clinical_data, |
|
trait=trait, |
|
trait_row=trait_row, |
|
convert_trait=convert_trait, |
|
age_row=age_row, |
|
convert_age=convert_age, |
|
gender_row=gender_row, |
|
convert_gender=convert_gender) |
|
|
|
|
|
print("\nPreviewing clinical features:") |
|
print(preview_df(clinical_features)) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True) |
|
clinical_features.to_csv(out_clinical_data_file) |
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("First 20 gene/probe IDs:") |
|
print(list(genetic_data.index[:20])) |
|
|
|
|
|
requires_gene_mapping = True |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview = preview_df(gene_annotation) |
|
print("Gene annotation preview:") |
|
print(preview) |
|
|
|
|
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
print("\nGene expression data shape after mapping:", gene_data.shape) |
|
print("\nFirst few rows of gene expression data:") |
|
print(preview_df(gene_data)) |
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
print("\nGene data shape (normalized gene-level):", gene_data.shape) |
|
|
|
|
|
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0) |
|
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data) |
|
|
|
|
|
linked_data = handle_missing_values(linked_data, trait) |
|
|
|
|
|
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) |
|
|
|
|
|
note = "Dataset contains gene expression data from cancer cell lines, but has severely imbalanced distribution of carcinosarcoma cases." |
|
is_usable = validate_and_save_cohort_info( |
|
is_final=True, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=True, |
|
is_trait_available=True, |
|
is_biased=is_trait_biased, |
|
df=linked_data, |
|
note=note |
|
) |
|
|
|
|
|
if is_usable: |
|
os.makedirs(os.path.dirname(out_data_file), exist_ok=True) |
|
linked_data.to_csv(out_data_file) |