Liu-Hy's picture
Add files using upload-large-folder tool
dd19378 verified
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "X-Linked_Lymphoproliferative_Syndrome"
cohort = "GSE180393"
# Input paths
in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome"
in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE180393"
# Output paths
out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE180393.csv"
out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE180393.csv"
out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE180393.csv"
json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json"
# Get file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Print shape and first few rows to verify data
print("Background Information:")
print(background_info)
print("\nClinical Data Shape:", clinical_data.shape)
print("\nFirst few rows of Clinical Data:")
print(clinical_data.head())
print("\nSample Characteristics:")
# Get dictionary of unique values per row
unique_values_dict = get_unique_values_by_row(clinical_data)
for row, values in unique_values_dict.items():
print(f"\n{row}:")
print(values)
# 1. Gene Expression Data Availability
# Yes - based on series info this is microarray gene expression data on Affymetrix ST2.1 platform
is_gene_available = True
# 2.1 Data Availability & 2.2 Data Type Conversion
# For trait:
# Row 0 contains "sample group" which indicates disease status
trait_row = 0
def convert_trait(value: str) -> Optional[int]:
if not isinstance(value, str):
return None
# Extract value after colon
if ':' in value:
value = value.split(':', 1)[1].strip()
# Living donor = 0 (control), all disease conditions = 1
if 'Living donor' in value:
return 0
return 1 # All other values indicate disease conditions
# Age and gender data not available in sample characteristics
age_row = None
gender_row = None
def convert_age(value: str) -> Optional[float]:
return None
def convert_gender(value: str) -> Optional[int]:
return None
# 3. Save metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=bool(trait_row is not None))
# 4. Extract clinical features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 row IDs and shape of data
print("Shape of genetic data:", genetic_data.shape)
print("\nFirst 5 rows with sample columns:")
print(genetic_data.head())
print("\nFirst 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# Print first few lines of raw matrix file to inspect format
print("\nFirst few lines of raw matrix file:")
with gzip.open(matrix_file_path, 'rt') as f:
for i, line in enumerate(f):
if i < 10: # Print first 10 lines
print(line.strip())
elif "!series_matrix_table_begin" in line:
print("\nFound table marker at line", i)
# Print next 3 lines after marker
for _ in range(3):
print(next(f).strip())
break
# Based on the gene identifiers shown (e.g. '100009613_at', '10000_at'), these appear to be Affymetrix probe IDs
# from the microarray platform mentioned in the metadata rather than standard human gene symbols.
# Therefore they will need to be mapped to gene symbols.
requires_gene_mapping = True
# First inspect raw SOFT file content
print("First 50 lines of SOFT file:")
with gzip.open(soft_file_path, 'rt') as f:
for i, line in enumerate(f):
if i < 50: # Print first 50 lines
print(line.strip())
elif i == 50:
print("...\n")
# Extract gene annotation
gene_annotation = get_gene_annotation(soft_file_path)
# Print number of rows and columns
print(f"\nShape of annotation data: {gene_annotation.shape}")
print("\nColumn names in annotation data:")
print(gene_annotation.columns.tolist())
# Print first few entries
print("\nPreview of annotation data:")
print(gene_annotation.head())
# Get gene annotation using the provided function
gene_annotation = get_gene_annotation(soft_file_path)
# Create mapping between probe IDs and gene symbols through Entrez IDs
prob_to_entrez = gene_annotation[['ID', 'ENTREZ_GENE_ID']].dropna()
entrez_to_symbol = pd.read_csv('https://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz',
sep='\t', compression='gzip',
usecols=['GeneID', 'Symbol']).rename(columns={'GeneID': 'ENTREZ_GENE_ID', 'Symbol': 'Gene'})
# Get final mapping and proceed with gene data conversion
mapping_df = prob_to_entrez.merge(entrez_to_symbol, on='ENTREZ_GENE_ID', how='left')[['ID', 'Gene']].dropna()
# Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Normalize gene symbols to official ones
gene_data = normalize_gene_symbols_in_index(gene_data)
print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head())
# Save gene data
gene_data.to_csv(out_gene_data_file)
# Get gene annotation using the provided function
gene_annotation = get_gene_annotation(soft_file_path)
# Create mapping between probe IDs and gene symbols through Entrez IDs
prob_to_entrez = gene_annotation[['ID', 'ENTREZ_GENE_ID']].dropna()
prob_to_entrez['ENTREZ_GENE_ID'] = prob_to_entrez['ENTREZ_GENE_ID'].astype(str)
entrez_to_symbol = pd.read_csv('https://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz',
sep='\t', compression='gzip',
usecols=['GeneID', 'Symbol'])
entrez_to_symbol['GeneID'] = entrez_to_symbol['GeneID'].astype(str)
# Get final mapping and proceed with gene data conversion
mapping_df = prob_to_entrez.merge(entrez_to_symbol,
left_on='ENTREZ_GENE_ID',
right_on='GeneID',
how='left')[['ID', 'Symbol']].dropna()
mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'})
# Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)
# Normalize gene symbols to official ones
gene_data = normalize_gene_symbols_in_index(gene_data)
print("\nShape of gene expression data after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head())
# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Gene data was already normalized in previous step
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Validate and save metadata about dataset being unusable due to lack of trait data
note = "Dataset contains gene expression data from kidney disease patients, but lacks data for X-linked lymphoproliferative syndrome."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=False,
df=gene_data,
note=note
)
# 1. Gene expression data was normalized in step 7 and stored in genetic_data
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
genetic_data.to_csv(out_gene_data_file)
# 2. Save metadata indicating trait data is unavailable
note = "Dataset contains gene expression data from kidney disease patients, but lacks data for X-linked lymphoproliferative syndrome."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=False,
df=genetic_data,
note=note
)