|
|
|
from tools.preprocess import * |
|
|
|
|
|
trait = "X-Linked_Lymphoproliferative_Syndrome" |
|
cohort = "GSE180394" |
|
|
|
|
|
in_trait_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome" |
|
in_cohort_dir = "../DATA/GEO/X-Linked_Lymphoproliferative_Syndrome/GSE180394" |
|
|
|
|
|
out_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/GSE180394.csv" |
|
out_gene_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/gene_data/GSE180394.csv" |
|
out_clinical_data_file = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/clinical_data/GSE180394.csv" |
|
json_path = "./output/preprocess/3/X-Linked_Lymphoproliferative_Syndrome/cohort_info.json" |
|
|
|
|
|
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir) |
|
|
|
|
|
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path) |
|
|
|
|
|
print("Background Information:") |
|
print(background_info) |
|
print("\nClinical Data Shape:", clinical_data.shape) |
|
print("\nFirst few rows of Clinical Data:") |
|
print(clinical_data.head()) |
|
|
|
print("\nSample Characteristics:") |
|
|
|
unique_values_dict = get_unique_values_by_row(clinical_data) |
|
for row, values in unique_values_dict.items(): |
|
print(f"\n{row}:") |
|
print(values) |
|
|
|
|
|
is_gene_available = True |
|
|
|
|
|
|
|
trait_row = None |
|
age_row = None |
|
gender_row = None |
|
|
|
|
|
def convert_trait(value: str) -> Optional[int]: |
|
"""No X-Linked Lymphoproliferative Syndrome cases in this dataset""" |
|
return None |
|
|
|
def convert_age(value: str) -> Optional[float]: |
|
return None |
|
|
|
def convert_gender(value: str) -> Optional[int]: |
|
return None |
|
|
|
|
|
validate_and_save_cohort_info(is_final=False, |
|
cohort=cohort, |
|
info_path=json_path, |
|
is_gene_available=is_gene_available, |
|
is_trait_available=False) |
|
|
|
|
|
|
|
genetic_data = get_genetic_data(matrix_file_path) |
|
|
|
|
|
print("Shape of genetic data:", genetic_data.shape) |
|
print("\nFirst 5 rows with sample columns:") |
|
print(genetic_data.head()) |
|
print("\nFirst 20 gene/probe IDs:") |
|
print(list(genetic_data.index[:20])) |
|
|
|
|
|
print("\nFirst few lines of raw matrix file:") |
|
with gzip.open(matrix_file_path, 'rt') as f: |
|
for i, line in enumerate(f): |
|
if i < 10: |
|
print(line.strip()) |
|
elif "!series_matrix_table_begin" in line: |
|
print("\nFound table marker at line", i) |
|
|
|
for _ in range(3): |
|
print(next(f).strip()) |
|
break |
|
requires_gene_mapping = True |
|
|
|
|
|
gene_annotation = get_gene_annotation(soft_file_path, prefixes=['^', '!']) |
|
|
|
|
|
print("Available columns in gene annotation:") |
|
print(gene_annotation.columns.tolist()) |
|
|
|
|
|
print("\nGene annotation preview (first 5 rows):") |
|
print(gene_annotation.head()) |
|
|
|
|
|
print("\nChecking SOFT file for Platform annotation:") |
|
with gzip.open(soft_file_path, 'rt') as f: |
|
in_platform = False |
|
for i, line in enumerate(f): |
|
if line.startswith('^PLATFORM'): |
|
in_platform = True |
|
print("\nFound Platform section:") |
|
if in_platform and i < 100: |
|
print(line.strip()) |
|
|
|
mapping_df = gene_annotation.rename(columns={'ID': 'ID', 'ENTREZ_GENE_ID': 'Gene'}) |
|
mapping_df = mapping_df.astype({'ID': 'str', 'Gene': 'str'}) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
print("Shape of gene expression data after mapping:", gene_data.shape) |
|
print("\nFirst few rows of mapped gene expression data:") |
|
print(gene_data.head()) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview = preview_df(gene_annotation) |
|
print("Gene annotation preview:") |
|
print(preview) |
|
|
|
probe_pattern = r'[0-9]+_at$' |
|
probes = [id for id in genetic_data.index if re.match(probe_pattern, id)] |
|
|
|
|
|
mapping_df = pd.DataFrame() |
|
mapping_df['ID'] = probes |
|
mapping_df['Gene'] = [re.match(r'(\d+)_at', id).group(1) for id in probes] |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
print("Shape of gene expression data after mapping:", gene_data.shape) |
|
print("\nFirst few rows of mapped gene expression data:") |
|
print(gene_data.head()) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview = preview_df(gene_annotation) |
|
print("Gene annotation preview:") |
|
print(preview) |
|
|
|
genetic_data.index = genetic_data.index.str.replace(r'0*([0-9]+_at)', r'\1', regex=True) |
|
|
|
|
|
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'ENTREZ_GENE_ID') |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
print("Shape of gene expression data after mapping:", gene_data.shape) |
|
print("\nFirst few rows of mapped gene expression data:") |
|
print(gene_data.head()) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview = preview_df(gene_annotation) |
|
print("Gene annotation preview:") |
|
print(preview) |
|
|
|
print("Gene annotation info:") |
|
print(gene_annotation.info()) |
|
print("\nGene annotation columns:") |
|
print(gene_annotation.columns) |
|
|
|
|
|
mapping_df = gene_annotation.copy() |
|
mapping_df.columns = ['ID', 'Gene'] |
|
|
|
|
|
genetic_data.index = genetic_data.index.str.replace(r'0*(\d+)(_at)', r'\1\2', regex=True) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
print("Shape of gene expression data after mapping:", gene_data.shape) |
|
print("\nFirst few rows of mapped gene expression data:") |
|
print(gene_data.head()) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |
|
|
|
gene_annotation = get_gene_annotation(soft_file_path) |
|
|
|
|
|
preview = preview_df(gene_annotation) |
|
print("Gene annotation preview:") |
|
print(preview) |
|
|
|
mapping_df = pd.DataFrame() |
|
mapping_df['ID'] = gene_annotation['ID'] |
|
mapping_df['Gene'] = gene_annotation['ENTREZ_GENE_ID'] |
|
|
|
|
|
genetic_data.index = genetic_data.index.str.replace(r'0*(\d+)(_at)', r'\1\2', regex=True) |
|
|
|
|
|
gene_data = apply_gene_mapping(genetic_data, mapping_df) |
|
|
|
|
|
gene_data = normalize_gene_symbols_in_index(gene_data) |
|
|
|
|
|
print("Shape of gene expression data after mapping:", gene_data.shape) |
|
print("\nFirst few rows of mapped gene expression data:") |
|
print(gene_data.head()) |
|
|
|
|
|
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True) |
|
gene_data.to_csv(out_gene_data_file) |