Liu-Hy commited on
Commit
3b8d6f7
·
verified ·
1 Parent(s): dc810d0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +29 -0
  2. p1/preprocess/Rheumatoid_Arthritis/GSE236924.csv +3 -0
  3. p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE236924.csv +3 -0
  4. p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE97475.csv +3 -0
  5. p1/preprocess/Sarcoma/GSE197147.csv +3 -0
  6. p1/preprocess/Sarcoma/gene_data/GSE197147.csv +3 -0
  7. p1/preprocess/Schizophrenia/GSE145554.csv +3 -0
  8. p1/preprocess/Schizophrenia/gene_data/GSE145554.csv +3 -0
  9. p1/preprocess/Sickle_Cell_Anemia/GSE117613.csv +3 -0
  10. p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE117613.csv +3 -0
  11. p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE46471.csv +0 -0
  12. p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE84633.csv +3 -0
  13. p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE84634.csv +3 -0
  14. p1/preprocess/Sjögrens_Syndrome/GSE135809.csv +3 -0
  15. p1/preprocess/Sjögrens_Syndrome/GSE143153.csv +0 -0
  16. p1/preprocess/Sjögrens_Syndrome/GSE40611.csv +3 -0
  17. p1/preprocess/Sjögrens_Syndrome/GSE51092.csv +3 -0
  18. p1/preprocess/Sjögrens_Syndrome/GSE66795.csv +3 -0
  19. p1/preprocess/Sjögrens_Syndrome/GSE84844.csv +3 -0
  20. p1/preprocess/Sjögrens_Syndrome/GSE93683.csv +3 -0
  21. p1/preprocess/Sjögrens_Syndrome/GSE94510.csv +0 -0
  22. p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE135809.csv +2 -0
  23. p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE143153.csv +4 -0
  24. p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE40611.csv +2 -0
  25. p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE51092.csv +2 -0
  26. p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE66795.csv +2 -0
  27. p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE84844.csv +4 -0
  28. p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE93683.csv +2 -0
  29. p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE94510.csv +2 -0
  30. p1/preprocess/Sjögrens_Syndrome/code/GSE135809.py +172 -0
  31. p1/preprocess/Sjögrens_Syndrome/code/GSE140161.py +152 -0
  32. p1/preprocess/Sjögrens_Syndrome/code/GSE143153.py +180 -0
  33. p1/preprocess/Sjögrens_Syndrome/code/GSE40611.py +157 -0
  34. p1/preprocess/Sjögrens_Syndrome/code/GSE51092.py +167 -0
  35. p1/preprocess/Sjögrens_Syndrome/code/GSE66795.py +150 -0
  36. p1/preprocess/Sjögrens_Syndrome/code/GSE84844.py +186 -0
  37. p1/preprocess/Sjögrens_Syndrome/code/GSE93683.py +147 -0
  38. p1/preprocess/Sjögrens_Syndrome/code/GSE94510.py +165 -0
  39. p1/preprocess/Sjögrens_Syndrome/code/TCGA.py +66 -0
  40. p1/preprocess/Sjögrens_Syndrome/gene_data/GSE135809.csv +3 -0
  41. p1/preprocess/Sjögrens_Syndrome/gene_data/GSE143153.csv +0 -0
  42. p1/preprocess/Sjögrens_Syndrome/gene_data/GSE40611.csv +3 -0
  43. p1/preprocess/Sjögrens_Syndrome/gene_data/GSE51092.csv +3 -0
  44. p1/preprocess/Sjögrens_Syndrome/gene_data/GSE84844.csv +3 -0
  45. p1/preprocess/Sjögrens_Syndrome/gene_data/GSE93683.csv +3 -0
  46. p1/preprocess/Sjögrens_Syndrome/gene_data/GSE94510.csv +0 -0
  47. p1/preprocess/Stomach_Cancer/GSE208099.csv +0 -0
  48. p1/preprocess/Stomach_Cancer/clinical_data/GSE208099.csv +3 -0
  49. p1/preprocess/Stomach_Cancer/code/GSE118916.py +116 -0
  50. p1/preprocess/Stomach_Cancer/code/GSE128459.py +140 -0
.gitattributes CHANGED
@@ -832,3 +832,32 @@ p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE176440.csv filter=lfs diff=lfs m
832
  p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57386.csv filter=lfs diff=lfs merge=lfs -text
833
  p1/preprocess/Rectal_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
834
  p1/preprocess/Polycystic_Ovary_Syndrome/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
832
  p1/preprocess/Psoriatic_Arthritis/gene_data/GSE57386.csv filter=lfs diff=lfs merge=lfs -text
833
  p1/preprocess/Rectal_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
834
  p1/preprocess/Polycystic_Ovary_Syndrome/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
835
+ p1/preprocess/Sarcoma/GSE197147.csv filter=lfs diff=lfs merge=lfs -text
836
+ p1/preprocess/Schizophrenia/GSE145554.csv filter=lfs diff=lfs merge=lfs -text
837
+ p1/preprocess/Sickle_Cell_Anemia/GSE117613.csv filter=lfs diff=lfs merge=lfs -text
838
+ p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE97475.csv filter=lfs diff=lfs merge=lfs -text
839
+ p1/preprocess/Sarcoma/gene_data/GSE197147.csv filter=lfs diff=lfs merge=lfs -text
840
+ p1/preprocess/Rheumatoid_Arthritis/GSE236924.csv filter=lfs diff=lfs merge=lfs -text
841
+ p1/preprocess/Schizophrenia/gene_data/GSE145554.csv filter=lfs diff=lfs merge=lfs -text
842
+ p1/preprocess/Sjögrens_Syndrome/GSE135809.csv filter=lfs diff=lfs merge=lfs -text
843
+ p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE117613.csv filter=lfs diff=lfs merge=lfs -text
844
+ p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE236924.csv filter=lfs diff=lfs merge=lfs -text
845
+ p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE84633.csv filter=lfs diff=lfs merge=lfs -text
846
+ p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE84634.csv filter=lfs diff=lfs merge=lfs -text
847
+ p1/preprocess/Sjögrens_Syndrome/GSE40611.csv filter=lfs diff=lfs merge=lfs -text
848
+ p1/preprocess/Sjögrens_Syndrome/GSE93683.csv filter=lfs diff=lfs merge=lfs -text
849
+ p1/preprocess/Sjögrens_Syndrome/GSE84844.csv filter=lfs diff=lfs merge=lfs -text
850
+ p1/preprocess/Sjögrens_Syndrome/gene_data/GSE40611.csv filter=lfs diff=lfs merge=lfs -text
851
+ p1/preprocess/Sjögrens_Syndrome/gene_data/GSE135809.csv filter=lfs diff=lfs merge=lfs -text
852
+ p1/preprocess/Sjögrens_Syndrome/GSE51092.csv filter=lfs diff=lfs merge=lfs -text
853
+ p1/preprocess/Sjögrens_Syndrome/gene_data/GSE93683.csv filter=lfs diff=lfs merge=lfs -text
854
+ p1/preprocess/Sjögrens_Syndrome/gene_data/GSE84844.csv filter=lfs diff=lfs merge=lfs -text
855
+ p1/preprocess/Stomach_Cancer/gene_data/GSE147163.csv filter=lfs diff=lfs merge=lfs -text
856
+ p1/preprocess/Stomach_Cancer/gene_data/GSE128459.csv filter=lfs diff=lfs merge=lfs -text
857
+ p1/preprocess/Sjögrens_Syndrome/GSE66795.csv filter=lfs diff=lfs merge=lfs -text
858
+ p1/preprocess/Stomach_Cancer/gene_data/GSE172197.csv filter=lfs diff=lfs merge=lfs -text
859
+ p1/preprocess/Stomach_Cancer/gene_data/GSE161533.csv filter=lfs diff=lfs merge=lfs -text
860
+ p1/preprocess/Sjögrens_Syndrome/gene_data/GSE51092.csv filter=lfs diff=lfs merge=lfs -text
861
+ p1/preprocess/Stomach_Cancer/gene_data/GSE98708.csv filter=lfs diff=lfs merge=lfs -text
862
+ p1/preprocess/Stomach_Cancer/gene_data/GSE183136.csv filter=lfs diff=lfs merge=lfs -text
863
+ p1/preprocess/Stomach_Cancer/gene_data/GSE130823.csv filter=lfs diff=lfs merge=lfs -text
p1/preprocess/Rheumatoid_Arthritis/GSE236924.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:490c09bff2351ae16affdf8355e6e3d734513dbf864ca024fddb2ccffaa38dca
3
+ size 35075181
p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE236924.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0889c2bc648b2b6bc1acfce5a519a7c835ddb2679c77ba3da20898108bfd49e
3
+ size 35074636
p1/preprocess/Rheumatoid_Arthritis/gene_data/GSE97475.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f878f347055d43a45dabc516d5439c40520de0e4801d000f60d50442300ba19
3
+ size 26337377
p1/preprocess/Sarcoma/GSE197147.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58a557bffa82aad9a6a1429a1845020b51678c56e9c08cf37afa90b229b9455c
3
+ size 24566728
p1/preprocess/Sarcoma/gene_data/GSE197147.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d5097da945a3aa774cf6e1fda0eeddaebca8f1dc17f502e0c58d49a4fb3187f
3
+ size 24566408
p1/preprocess/Schizophrenia/GSE145554.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66f04d20a68dcd294b83eb437ba0d260f72f310ef0e51c9259391c7a2de9d2bd
3
+ size 16475871
p1/preprocess/Schizophrenia/gene_data/GSE145554.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f389a67158c1ed8534c5ac8ab923221cb4788be22f825167d4a8d17dd40e04a
3
+ size 16475298
p1/preprocess/Sickle_Cell_Anemia/GSE117613.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32c9618c357a52084c8c3c9a4d64d0ec2dab0bd25e60a4c417d8f999dc7a1584
3
+ size 11936971
p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE117613.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f42c7ebdadc8d55b92d6c01b2dbe8a0cd9c61a2b80b4c3db078a25bb33bffe6
3
+ size 11936309
p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE46471.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE84633.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:935ee14529c87d2cc114bd6bf28f4dfe80c3fbe053430299830389502ef4bf4d
3
+ size 10811308
p1/preprocess/Sickle_Cell_Anemia/gene_data/GSE84634.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a369d322c0de49786b07ab9a91b3ffeb24639bb2a6dbbed8bbf1c09dddb80d1
3
+ size 11282737
p1/preprocess/Sjögrens_Syndrome/GSE135809.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc0c968270cdbd04f0d87ade3ac7880cb4dd593511f1669241f6c4ad429fe94d
3
+ size 12770637
p1/preprocess/Sjögrens_Syndrome/GSE143153.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Sjögrens_Syndrome/GSE40611.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f0b0e925490712841e234d43fa388d8375f89de4e23566062a7b2532d83e3dc
3
+ size 10809062
p1/preprocess/Sjögrens_Syndrome/GSE51092.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23316b7e08fff51f3f269244caad33a89871d5fae5beb19fbe5d4af150d64aca
3
+ size 27673960
p1/preprocess/Sjögrens_Syndrome/GSE66795.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:246a229b95528951b1596a2c80cffc82a9653b6709e58515b4510e9fa59c8ba6
3
+ size 41210575
p1/preprocess/Sjögrens_Syndrome/GSE84844.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02383be042482af46c28d426f54351445d891e0d6625f5c22a28cf7ba416b28d
3
+ size 15946595
p1/preprocess/Sjögrens_Syndrome/GSE93683.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37bde4c050775167a06592eec42c0997e71d2e91f178c297b333a2ba2463a3e4
3
+ size 12769618
p1/preprocess/Sjögrens_Syndrome/GSE94510.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE135809.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM4030545,GSM4030546,GSM4030547,GSM4030548,GSM4030549,GSM4030550,GSM4030551,GSM4030552,GSM4030553,GSM4030554,GSM4030555,GSM4030556,GSM4030557,GSM4030558,GSM4030559,GSM4030560,GSM4030561,GSM4030562,GSM4030563,GSM4030564,GSM4030565,GSM4030566,GSM4030567,GSM4030568,GSM4030569,GSM4030570,GSM4030571,GSM4030572,GSM4030573,GSM4030574,GSM4030575,GSM4030576,GSM4030577,GSM4030578,GSM4030579,GSM4030580,GSM4030581,GSM4030582,GSM4030583,GSM4030584,GSM4030585,GSM4030586,GSM4030587,GSM4030588,GSM4030589,GSM4030590,GSM4030591,GSM4030592
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE143153.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM4251021,GSM4251022,GSM4251023,GSM4251024,GSM4251025,GSM4251026,GSM4251027,GSM4251028,GSM4251029,GSM4251030,GSM4251031,GSM4251032,GSM4251033,GSM4251034,GSM4251035,GSM4251036,GSM4251037,GSM4251038,GSM4251039,GSM4251040,GSM4251041,GSM4251042,GSM4251043,GSM4251044,GSM4251045,GSM4251046,GSM4251047,GSM4251048,GSM4251049,GSM4251050,GSM4251051,GSM4251052
2
+ 1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 56.0,51.0,37.0,40.0,41.0,50.0,38.0,50.0,58.0,55.0,35.0,43.0,62.0,46.0,58.0,40.0,66.0,35.0,58.0,60.0,63.0,56.0,19.0,64.0,71.0,30.0,31.0,45.0,38.0,43.0,37.0,41.0
4
+ 1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0
p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE40611.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM997850,GSM997851,GSM997852,GSM997853,GSM997854,GSM997855,GSM997856,GSM997857,GSM997858,GSM997859,GSM997860,GSM997861,GSM997862,GSM997863,GSM997864,GSM997865,GSM997866,GSM997867,GSM997868,GSM997869,GSM997870,GSM997871,GSM997872,GSM997873,GSM997874,GSM997875,GSM997876,GSM997877,GSM997878,GSM997879,GSM997880,GSM997881,GSM997882,GSM997883,GSM997884,GSM997885,GSM997886,GSM997887,GSM997888,GSM997889,GSM997890,GSM997891,GSM997892,GSM997893,GSM997894,GSM997895,GSM997896,GSM997897,GSM997898
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE51092.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM1238429,GSM1238430,GSM1238431,GSM1238432,GSM1238433,GSM1238434,GSM1238435,GSM1238436,GSM1238437,GSM1238438,GSM1238439,GSM1238440,GSM1238441,GSM1238442,GSM1238443,GSM1238444,GSM1238445,GSM1238446,GSM1238447,GSM1238448,GSM1238449,GSM1238450,GSM1238451,GSM1238452,GSM1238453,GSM1238454,GSM1238455,GSM1238456,GSM1238457,GSM1238458,GSM1238459,GSM1238460,GSM1238461,GSM1238462,GSM1238463,GSM1238464,GSM1238465,GSM1238466,GSM1238467,GSM1238468,GSM1238469,GSM1238470,GSM1238471,GSM1238472,GSM1238473,GSM1238474,GSM1238475,GSM1238476,GSM1238477,GSM1238478,GSM1238479,GSM1238480,GSM1238481,GSM1238482,GSM1238483,GSM1238484,GSM1238485,GSM1238486,GSM1238487,GSM1238488,GSM1238489,GSM1238490,GSM1238491,GSM1238492,GSM1238493,GSM1238494,GSM1238495,GSM1238496,GSM1238497,GSM1238498,GSM1238499,GSM1238500,GSM1238501,GSM1238502,GSM1238503,GSM1238504,GSM1238505,GSM1238506,GSM1238507,GSM1238508,GSM1238509,GSM1238510,GSM1238511,GSM1238512,GSM1238513,GSM1238514,GSM1238515,GSM1238516,GSM1238517,GSM1238518,GSM1238519,GSM1238520,GSM1238521,GSM1238522,GSM1238523,GSM1238524,GSM1238525,GSM1238526,GSM1238527,GSM1238528,GSM1238529,GSM1238530,GSM1238531,GSM1238532,GSM1238533,GSM1238534,GSM1238535,GSM1238536,GSM1238537,GSM1238538,GSM1238539,GSM1238540,GSM1238541,GSM1238542,GSM1238543,GSM1238544,GSM1238545,GSM1238546,GSM1238547,GSM1238548,GSM1238549,GSM1238550,GSM1238551,GSM1238552,GSM1238553,GSM1238554,GSM1238555,GSM1238556,GSM1238557,GSM1238558,GSM1238559,GSM1238560,GSM1238561,GSM1238562,GSM1238563,GSM1238564,GSM1238565,GSM1238566,GSM1238567,GSM1238568,GSM1238569,GSM1238570,GSM1238571,GSM1238572,GSM1238573,GSM1238574,GSM1238575,GSM1238576,GSM1238577,GSM1238578,GSM1238579,GSM1238580,GSM1238581,GSM1238582,GSM1238583,GSM1238584,GSM1238585,GSM1238586,GSM1238587,GSM1238588,GSM1238589,GSM1238590,GSM1238591,GSM1238592,GSM1238593,GSM1238594,GSM1238595,GSM1238596,GSM1238598,GSM1238599,GSM1238601,GSM1238603,GSM1238605,GSM1238607,GSM1238608,GSM1238610,GSM1238611,GSM1238612,GSM1238613,GSM1238614,GSM1238615,GSM1238616,GSM1238617,GSM1238618,GSM1238619,GSM1238620,GSM1238621,GSM1238622,GSM1238623,GSM1238624,GSM1238625,GSM1238626,GSM1238627,GSM1238628,GSM1238629,GSM1238630,GSM1238631,GSM1238632,GSM1238633,GSM1238634,GSM1238635,GSM1238636,GSM1238637,GSM1238638,GSM1238639,GSM1238640,GSM1238641,GSM1238642,GSM1238643,GSM1238644,GSM1238645,GSM1238646,GSM1238647,GSM1238648,GSM1238649,GSM1238650,GSM1238651,GSM1238652,GSM1238653,GSM1238654,GSM1238655,GSM1238656
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE66795.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM1632237,GSM1632238,GSM1632239,GSM1632240,GSM1632241,GSM1632242,GSM1632243,GSM1632244,GSM1632245,GSM1632246,GSM1632247,GSM1632248,GSM1632249,GSM1632250,GSM1632251,GSM1632252,GSM1632253,GSM1632254,GSM1632255,GSM1632256,GSM1632257,GSM1632258,GSM1632259,GSM1632260,GSM1632261,GSM1632262,GSM1632263,GSM1632264,GSM1632265,GSM1632266,GSM1632267,GSM1632268,GSM1632269,GSM1632270,GSM1632271,GSM1632272,GSM1632273,GSM1632274,GSM1632275,GSM1632276,GSM1632277,GSM1632278,GSM1632279,GSM1632280,GSM1632281,GSM1632282,GSM1632283,GSM1632284,GSM1632285,GSM1632286,GSM1632287,GSM1632288,GSM1632289,GSM1632290,GSM1632291,GSM1632292,GSM1632293,GSM1632294,GSM1632295,GSM1632296,GSM1632297,GSM1632298,GSM1632299,GSM1632300,GSM1632301,GSM1632302,GSM1632303,GSM1632304,GSM1632305,GSM1632306,GSM1632307,GSM1632308,GSM1632309,GSM1632310,GSM1632311,GSM1632312,GSM1632313,GSM1632314,GSM1632315,GSM1632316,GSM1632317,GSM1632318,GSM1632319,GSM1632320,GSM1632321,GSM1632322,GSM1632323,GSM1632324,GSM1632325,GSM1632326,GSM1632327,GSM1632328,GSM1632329,GSM1632330,GSM1632331,GSM1632332,GSM1632333,GSM1632334,GSM1632335,GSM1632336,GSM1632337,GSM1632338,GSM1632339,GSM1632340,GSM1632341,GSM1632342,GSM1632343,GSM1632344,GSM1632345,GSM1632346,GSM1632347,GSM1632348,GSM1632349,GSM1632350,GSM1632351,GSM1632352,GSM1632353,GSM1632354,GSM1632355,GSM1632356,GSM1632357,GSM1632358,GSM1632359,GSM1632360,GSM1632361,GSM1632362,GSM1632363,GSM1632364,GSM1632365,GSM1632366,GSM1632367,GSM1632368,GSM1632369,GSM1632370,GSM1632371,GSM1632372,GSM1632373,GSM1632374,GSM1632375,GSM1632376,GSM1632377,GSM1632378,GSM1632379,GSM1632380,GSM1632381,GSM1632382,GSM1632383,GSM1632384,GSM1632385,GSM1632386,GSM1632387,GSM1632388,GSM1632389,GSM1632390,GSM1632391,GSM1632392,GSM1632393,GSM1632394,GSM1632395,GSM1632396
2
+ 0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE84844.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ GSM2252121,GSM2252122,GSM2252123,GSM2252124,GSM2252125,GSM2252126,GSM2252127,GSM2252128,GSM2252129,GSM2252130,GSM2252131,GSM2252132,GSM2252133,GSM2252134,GSM2252135,GSM2252136,GSM2252137,GSM2252138,GSM2252139,GSM2252140,GSM2252141,GSM2252142,GSM2252143,GSM2252144,GSM2252145,GSM2252146,GSM2252147,GSM2252148,GSM2252149,GSM2252150,GSM2252151,GSM2252152,GSM2252153,GSM2252154,GSM2252155,GSM2252156,GSM2252157,GSM2252158,GSM2252159,GSM2252160,GSM2252161,GSM2252162,GSM2252163,GSM2252164,GSM2252165,GSM2252166,GSM2252167,GSM2252168,GSM2252169,GSM2252170,GSM2252171,GSM2252172,GSM2252173,GSM2252174,GSM2252175,GSM2252176,GSM2252177,GSM2252178,GSM2252179,GSM2252180
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ 45.0,40.0,54.0,50.0,31.0,44.0,43.0,25.0,29.0,38.0,28.0,31.0,31.0,30.0,30.0,44.0,24.0,38.0,52.0,49.0,26.0,52.0,48.0,55.0,33.0,33.0,44.0,44.0,42.0,47.0,39.0,63.0,68.0,71.0,46.0,62.0,71.0,60.0,66.0,70.0,75.0,70.0,66.0,47.0,63.0,56.0,59.0,70.0,48.0,47.0,71.0,59.0,71.0,66.0,66.0,53.0,54.0,34.0,76.0,65.0
4
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE93683.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM2460433,GSM2460434,GSM2460435,GSM2460436,GSM2460437,GSM2460438,GSM2460439,GSM2460440,GSM2460441,GSM2460442,GSM2460443,GSM2460444,GSM2460445,GSM2460446,GSM2460447,GSM2460448,GSM2460449,GSM2460450,GSM2460451,GSM2460452,GSM2460453,GSM2460454,GSM2460455,GSM2460456,GSM2460457,GSM2460458,GSM2460459,GSM2460460,GSM2460461,GSM2460462,GSM2460463,GSM2460464,GSM2460465,GSM2460466,GSM2460467,GSM2460468,GSM2460469,GSM2460470,GSM2460471,GSM2460472,GSM2460473,GSM2460474,GSM2460475,GSM2460476,GSM2460477,GSM2460478,GSM2460479,GSM2460480
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Sjögrens_Syndrome/clinical_data/GSE94510.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM2477208,GSM2477209,GSM2477210,GSM2477211,GSM2477212,GSM2477213,GSM2477214,GSM2477215,GSM2477216,GSM2477217,GSM2477218,GSM2477219,GSM2477220,GSM2477221,GSM2477222,GSM2477223,GSM2477224,GSM2477225,GSM2477226,GSM2477227,GSM2477228,GSM2477229,GSM2477230,GSM2477231,GSM2477232,GSM2477233,GSM2477234,GSM2477235,GSM2477236,GSM2477237,GSM2477238,GSM2477239,GSM2477240,GSM2477241,GSM2477242,GSM2477243
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Sjögrens_Syndrome/code/GSE135809.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sjögrens_Syndrome"
6
+ cohort = "GSE135809"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sjögrens_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Sjögrens_Syndrome/GSE135809"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sjögrens_Syndrome/GSE135809.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sjögrens_Syndrome/gene_data/GSE135809.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sjögrens_Syndrome/clinical_data/GSE135809.csv"
16
+ json_path = "./output/preprocess/1/Sjögrens_Syndrome/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # Step 1: Determine whether gene expression data is available.
37
+ is_gene_available = True # Based on the background info ("Transcriptome data" and differential gene expression)
38
+
39
+ # Step 2: Identify data availability and create conversion functions.
40
+
41
+ # From the sample characteristics dictionary, the only row that clearly distinguishes
42
+ # patients (pSS) from healthy controls (HC) is row 1 via "subject id: HC-..." or "subject id: pSS-...".
43
+ trait_row = 1 # We can parse 'HC' => 0, 'pSS' => 1
44
+ age_row = None # No age information is provided
45
+ gender_row = None # No gender information is provided
46
+
47
+ def convert_trait(value: str) -> Optional[int]:
48
+ """
49
+ Convert 'subject id: HC-1' or 'subject id: pSS-1' to binary trait:
50
+ 0 for healthy control (HC), 1 for pSS.
51
+ """
52
+ # Extract substring after the colon
53
+ parts = value.split(":")
54
+ if len(parts) < 2:
55
+ return None
56
+ val = parts[1].strip()
57
+
58
+ # Check prefix
59
+ if val.startswith("HC"):
60
+ return 0
61
+ elif val.startswith("pSS"):
62
+ return 1
63
+ else:
64
+ return None
65
+
66
+ def convert_age(value: str) -> Optional[float]:
67
+ """
68
+ Placeholder function. No age data available, so this always returns None.
69
+ """
70
+ return None
71
+
72
+ def convert_gender(value: str) -> Optional[int]:
73
+ """
74
+ Placeholder function. No gender data available, so this always returns None.
75
+ """
76
+ return None
77
+
78
+ # Step 3: Conduct initial filtering and save metadata.
79
+ # Trait data availability is determined by whether trait_row is None.
80
+ is_trait_available = (trait_row is not None)
81
+
82
+ dataset_passed_filter = validate_and_save_cohort_info(
83
+ is_final=False,
84
+ cohort=cohort,
85
+ info_path=json_path,
86
+ is_gene_available=is_gene_available,
87
+ is_trait_available=is_trait_available
88
+ )
89
+
90
+ # Step 4: If trait data is available, extract clinical features.
91
+ if trait_row is not None:
92
+ # Assume 'clinical_data' DataFrame exists in the environment from previous step.
93
+ selected_clinical_df = geo_select_clinical_features(
94
+ clinical_data,
95
+ trait=trait,
96
+ trait_row=trait_row,
97
+ convert_trait=convert_trait,
98
+ age_row=age_row,
99
+ convert_age=convert_age,
100
+ gender_row=gender_row,
101
+ convert_gender=convert_gender
102
+ )
103
+
104
+ # Preview the extracted clinical features
105
+ preview_dict = preview_df(selected_clinical_df, n=5, max_items=200)
106
+ print("Preview of selected clinical features:", preview_dict)
107
+
108
+ # Save the clinical data to CSV
109
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
110
+ # STEP3
111
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
112
+ gene_data = get_genetic_data(matrix_file)
113
+
114
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
115
+ print(gene_data.index[:20])
116
+ # The gene identifiers shown (e.g., '1007_s_at', '1053_at') are Affymetrix probe IDs, not standard gene symbols.
117
+ # Therefore, they require mapping to human gene symbols.
118
+ print("\nrequires_gene_mapping = True")
119
+ # STEP5
120
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
121
+ gene_annotation = get_gene_annotation(soft_file)
122
+
123
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
124
+ print("Gene annotation preview:")
125
+ print(preview_df(gene_annotation))
126
+ # STEP: Gene Identifier Mapping
127
+
128
+ # 1. Identify which columns in the gene annotation dataframe correspond to the probe identifiers
129
+ # (same IDs as in gene expression data) and which correspond to gene symbols.
130
+ # From the preview, the "ID" column matches the probe IDs (like '1007_s_at' etc.),
131
+ # and "Gene Symbol" contains the gene symbols (e.g., 'DDR1 // MIR4640' etc.).
132
+
133
+ # 2. Extract and build a mapping dataframe (probe -> gene symbol).
134
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
135
+
136
+ # 3. Apply the mapping to convert probe-level data into gene-level data, dividing shared probe values
137
+ # equally among target genes and summing where probes map to the same gene.
138
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
139
+
140
+ # For inspection, print out the shape and a sample of the new index (gene symbols).
141
+ print("Mapped gene_data shape:", gene_data.shape)
142
+ print("First 20 genes in gene_data index:", list(gene_data.index[:20]))
143
+ # STEP7
144
+
145
+ # 1. Normalize the obtained gene data and save
146
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
147
+ normalized_gene_data.to_csv(out_gene_data_file)
148
+
149
+ # 2. Link clinical and gene expression data on sample IDs
150
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
151
+
152
+ # 3. Handle missing values systematically using the trait column name in the 'trait' variable
153
+ linked_data = handle_missing_values(linked_data, trait)
154
+
155
+ # 4. Check for biased features (trait, age, gender) using the same trait column name
156
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
157
+
158
+ # 5. Final quality validation and record metadata
159
+ is_usable = validate_and_save_cohort_info(
160
+ is_final=True,
161
+ cohort=cohort,
162
+ info_path=json_path,
163
+ is_gene_available=True,
164
+ is_trait_available=True,
165
+ is_biased=is_trait_biased,
166
+ df=linked_data,
167
+ note=f"Preprocessed with trait column named '{trait}'."
168
+ )
169
+
170
+ # 6. If usable, save linked data
171
+ if is_usable:
172
+ linked_data.to_csv(out_data_file, index=True)
p1/preprocess/Sjögrens_Syndrome/code/GSE140161.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sjögrens_Syndrome"
6
+ cohort = "GSE140161"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sjögrens_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Sjögrens_Syndrome/GSE140161"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sjögrens_Syndrome/GSE140161.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sjögrens_Syndrome/gene_data/GSE140161.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sjögrens_Syndrome/clinical_data/GSE140161.csv"
16
+ json_path = "./output/preprocess/1/Sjögrens_Syndrome/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if gene expression data is available
37
+ # Based on background info, this dataset uses Affymetrix chips on whole blood transcriptome,
38
+ # which strongly suggests gene expression data is available.
39
+ is_gene_available = True
40
+
41
+ # 2. Identify availability of trait, age, and gender data from the sample characteristics dictionary.
42
+ # From the dictionary:
43
+ # 0: ['tissue: Whole blood'] (irrelevant or constant)
44
+ # 1: ['Sex: female', 'Sex: male'] (2 unique values => available; we'll treat as gender)
45
+ # 2: ['antissa status: Positive', 'antissa status: Negative']
46
+ # 3: ['antissb status: Negative', 'antissb status: Positive']
47
+ # 4: ['disease state: Sjögren’s syndrome'] (only one unique value => effectively not available)
48
+ #
49
+ # Thus:
50
+ trait_row = None # Only one unique value for the disease state => not a usable variable
51
+ age_row = None # No age info in the dictionary
52
+ gender_row = 1 # "Sex: female"/"Sex: male" => usable
53
+
54
+ # 2.2. Define data conversion functions
55
+ def convert_trait(value: str):
56
+ # Not used in this dataset (trait_row=None), but defined for completeness
57
+ val = value.split(':')[-1].strip().lower()
58
+ # A generic conversion if there were varied trait statuses:
59
+ if val == "sjögren’s syndrome":
60
+ return 1
61
+ elif val == "":
62
+ return None
63
+ return None
64
+
65
+ def convert_age(value: str):
66
+ # Not used in this dataset (age_row=None), but defined for completeness
67
+ val = value.split(':')[-1].strip()
68
+ # Attempt numeric conversion
69
+ try:
70
+ return float(val)
71
+ except ValueError:
72
+ return None
73
+
74
+ def convert_gender(value: str):
75
+ val = value.split(':')[-1].strip().lower()
76
+ if val == "female":
77
+ return 0
78
+ elif val == "male":
79
+ return 1
80
+ return None
81
+
82
+ # 3. Save initial metadata using validate_and_save_cohort_info
83
+ # The trait is considered available only if trait_row is not None.
84
+ is_trait_available = (trait_row is not None)
85
+ validate_and_save_cohort_info(
86
+ is_final=False,
87
+ cohort=cohort,
88
+ info_path=json_path,
89
+ is_gene_available=is_gene_available,
90
+ is_trait_available=is_trait_available
91
+ )
92
+
93
+ # 4. If trait data is available (trait_row != None), then extract clinical data. Here, trait_row = None, so skip.
94
+ # STEP3
95
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
96
+ gene_data = get_genetic_data(matrix_file)
97
+
98
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
99
+ print(gene_data.index[:20])
100
+ # Based on the observed IDs (e.g., '23064070'), they do not match standard human gene symbols.
101
+ # Hence, they likely require a mapping step to convert these IDs to recognized gene symbols.
102
+ print("The given gene identifiers appear to be probe IDs or numeric identifiers, not standard gene symbols.")
103
+ print("requires_gene_mapping = True")
104
+ # STEP5
105
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
106
+ gene_annotation = get_gene_annotation(soft_file)
107
+
108
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
109
+ print("Gene annotation preview:")
110
+ print(preview_df(gene_annotation))
111
+ # STEP: Gene Identifier Mapping
112
+
113
+ # 1. Identify which columns in the gene_annotation DataFrame correspond to the probe IDs in gene_data
114
+ # and which columns contain the gene symbols. From the preview, column "ID" in gene_annotation
115
+ # stores probe identifiers (e.g., "TC0100006437.hg.1"), and "SPOT_ID.1" contains text that includes
116
+ # the gene symbol (e.g., "ISG15", "KLHL17", etc.).
117
+
118
+ # 2. Create a gene mapping dataframe by extracting these two columns and naming them properly.
119
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='SPOT_ID.1')
120
+
121
+ # 3. Convert the probe-level expression data (gene_data) into gene-level data using this mapping.
122
+ # This will distribute the expression values across multiple genes if a probe maps to multiple symbols,
123
+ # and sum up values for genes covered by multiple probes.
124
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
125
+ # STEP 7
126
+
127
+ # Since trait_row is None, we do NOT have trait data available. Thus, we cannot link clinical data
128
+ # or perform trait-based missing-value handling or bias analysis. We will, however, normalize gene
129
+ # symbols and then finalize the dataset's metadata accordingly.
130
+
131
+ # 1. Normalize the obtained gene data and save
132
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
133
+ normalized_gene_data.to_csv(out_gene_data_file)
134
+
135
+ # 2. Since trait data is unavailable (trait_row=None), we skip linking with clinical data
136
+ # and subsequent steps requiring trait information.
137
+
138
+ # 3. Perform final quality validation and record metadata.
139
+ # Because is_final=True, we must provide a DataFrame and a boolean is_biased value.
140
+ # Even though trait is unavailable, we pass normalized_gene_data as df and set is_biased=False.
141
+ is_usable = validate_and_save_cohort_info(
142
+ is_final=True,
143
+ cohort=cohort,
144
+ info_path=json_path,
145
+ is_gene_available=True,
146
+ is_trait_available=False,
147
+ is_biased=False,
148
+ df=normalized_gene_data,
149
+ note="No trait data available; final gene data saved alone."
150
+ )
151
+
152
+ # 4. Since trait data is unavailable, we do not produce or save any linked data for association studies.
p1/preprocess/Sjögrens_Syndrome/code/GSE143153.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sjögrens_Syndrome"
6
+ cohort = "GSE143153"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sjögrens_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Sjögrens_Syndrome/GSE143153"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sjögrens_Syndrome/GSE143153.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sjögrens_Syndrome/gene_data/GSE143153.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sjögrens_Syndrome/clinical_data/GSE143153.csv"
16
+ json_path = "./output/preprocess/1/Sjögrens_Syndrome/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Set is_gene_available based on dataset examination
37
+ is_gene_available = True # Since the data is from "Agilent Whole Human Genome" microarray
38
+
39
+ # 2.1) Determine data availability for trait, age, and gender
40
+ # From the sample characteristics dictionary, we've identified:
41
+ # - 'aecg disease classification' at row 1 for trait
42
+ # - 'age' at row 2
43
+ # - 'sex' at row 3
44
+ trait_row = 1
45
+ age_row = 2
46
+ gender_row = 3
47
+
48
+ # 2.2) Define data type conversion functions
49
+ def convert_trait(value: str) -> Optional[int]:
50
+ """
51
+ Converts trait data ('Primary SS', 'non-SS') to binary (1 or 0).
52
+ Unrecognized or empty values become None.
53
+ """
54
+ # Extract the substring after the colon
55
+ parts = value.split(':')
56
+ label = parts[-1].strip().lower() if len(parts) >= 2 else None
57
+
58
+ if label == 'primary ss':
59
+ return 1
60
+ elif label == 'non-ss':
61
+ return 0
62
+ else:
63
+ return None
64
+
65
+ def convert_age(value: str) -> Optional[float]:
66
+ """
67
+ Converts age data to a continuous numeric value.
68
+ Unrecognized or empty values become None.
69
+ """
70
+ parts = value.split(':')
71
+ label = parts[-1].strip() if len(parts) >= 2 else None
72
+
73
+ try:
74
+ return float(label)
75
+ except ValueError:
76
+ return None
77
+
78
+ def convert_gender(value: str) -> Optional[int]:
79
+ """
80
+ Converts gender data ('M' or 'F') to binary (1 for male, 0 for female).
81
+ Unrecognized or empty values become None.
82
+ """
83
+ parts = value.split(':')
84
+ label = parts[-1].strip().lower() if len(parts) >= 2 else None
85
+
86
+ if label == 'm':
87
+ return 1
88
+ elif label == 'f':
89
+ return 0
90
+ else:
91
+ return None
92
+
93
+ # 3) Conduct initial filtering with validate_and_save_cohort_info
94
+ # Trait availability is determined by whether trait_row is None.
95
+ is_trait_available = (trait_row is not None)
96
+
97
+ is_usable = validate_and_save_cohort_info(
98
+ is_final=False,
99
+ cohort=cohort,
100
+ info_path=json_path,
101
+ is_gene_available=is_gene_available,
102
+ is_trait_available=is_trait_available
103
+ )
104
+
105
+ # 4) If trait data is available, extract clinical features
106
+ # (the 'clinical_data' dataframe is assumed to be available in the environment)
107
+ if trait_row is not None:
108
+ selected_clinical_df = geo_select_clinical_features(
109
+ clinical_df=clinical_data,
110
+ trait=trait,
111
+ trait_row=trait_row,
112
+ convert_trait=convert_trait,
113
+ age_row=age_row,
114
+ convert_age=convert_age,
115
+ gender_row=gender_row,
116
+ convert_gender=convert_gender
117
+ )
118
+ preview = preview_df(selected_clinical_df)
119
+ print("Clinical Data Preview:", preview)
120
+
121
+ # Save the selected clinical features
122
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
123
+ # STEP3
124
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
125
+ gene_data = get_genetic_data(matrix_file)
126
+
127
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
128
+ print(gene_data.index[:20])
129
+ # Based on the index shown (numeric IDs rather than standard human gene symbols),
130
+ # these identifiers are not human gene symbols. Therefore, gene mapping is required.
131
+ print("requires_gene_mapping = True")
132
+ # STEP5
133
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
134
+ gene_annotation = get_gene_annotation(soft_file)
135
+
136
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
137
+ print("Gene annotation preview:")
138
+ print(preview_df(gene_annotation))
139
+ # STEP6: Gene Identifier Mapping
140
+
141
+ # 1) From the preview, the "ID" column in gene_annotation corresponds to the numeric probe IDs
142
+ # in the gene expression data, and "GeneName" holds the associated gene symbols.
143
+ mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col='ID', gene_col='GeneName')
144
+
145
+ # 2) Apply the probe-to-gene mapping to convert the probe-level expression data into gene-level expression data
146
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
147
+
148
+ # For observation, print the shape of the mapped gene_data and the first few gene symbols
149
+ print("Mapped gene_data shape:", gene_data.shape)
150
+ print("Example gene symbols in the index:", list(gene_data.index[:10]))
151
+ # STEP7
152
+
153
+ # 1. Normalize the obtained gene data and save
154
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
155
+ normalized_gene_data.to_csv(out_gene_data_file)
156
+
157
+ # 2. Link clinical and gene expression data on sample IDs
158
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
159
+
160
+ # 3. Handle missing values systematically using the trait column name in the 'trait' variable
161
+ linked_data = handle_missing_values(linked_data, trait)
162
+
163
+ # 4. Check for biased features (trait, age, gender) using the same trait column name
164
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
165
+
166
+ # 5. Final quality validation and record metadata
167
+ is_usable = validate_and_save_cohort_info(
168
+ is_final=True,
169
+ cohort=cohort,
170
+ info_path=json_path,
171
+ is_gene_available=True,
172
+ is_trait_available=True,
173
+ is_biased=is_trait_biased,
174
+ df=linked_data,
175
+ note=f"Preprocessed with trait column named '{trait}'."
176
+ )
177
+
178
+ # 6. If usable, save linked data
179
+ if is_usable:
180
+ linked_data.to_csv(out_data_file, index=True)
p1/preprocess/Sjögrens_Syndrome/code/GSE40611.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sjögrens_Syndrome"
6
+ cohort = "GSE40611"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sjögrens_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Sjögrens_Syndrome/GSE40611"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sjögrens_Syndrome/GSE40611.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sjögrens_Syndrome/gene_data/GSE40611.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sjögrens_Syndrome/clinical_data/GSE40611.csv"
16
+ json_path = "./output/preprocess/1/Sjögrens_Syndrome/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # Step 1: Determine if the dataset likely contains gene expression data
37
+ # Based on the background info (Affymetrix U133 plus 2.0 microarray), we set:
38
+ is_gene_available = True
39
+
40
+ # Step 2.1: Identify availability of trait, age, and gender data in the sample characteristics
41
+ # The sample characteristics dictionary has:
42
+ # {0: ['disease status: Control', 'disease status: pSS', 'disease status: Sicca'],
43
+ # 1: ['batch: 1', 'batch: 2', 'batch: 3']}
44
+ # We see that row 0 contains "pSS", "Control", and "Sicca", useful for the 'trait'. No rows correspond to age or gender.
45
+ trait_row = 0
46
+ age_row = None
47
+ gender_row = None
48
+
49
+ # Step 2.2: Define conversion functions for trait, age, and gender.
50
+
51
+ def convert_trait(value: str):
52
+ """
53
+ Convert raw disease status (after the last colon) to a binary indicator.
54
+ 'pSS' -> 1, 'Control' or 'Sicca' -> 0, Others -> None
55
+ """
56
+ if not value:
57
+ return None
58
+ val = value.split(':')[-1].strip().lower()
59
+ if 'pss' in val:
60
+ return 1
61
+ elif 'control' in val or 'sicca' in val:
62
+ return 0
63
+ return None
64
+
65
+ def convert_age(value: str):
66
+ """
67
+ This dataset does not provide age information, so return None.
68
+ """
69
+ return None
70
+
71
+ def convert_gender(value: str):
72
+ """
73
+ This dataset does not provide gender information, so return None.
74
+ """
75
+ return None
76
+
77
+ # Step 3: Conduct initial filtering and save metadata
78
+ is_trait_available = (trait_row is not None)
79
+ _ = validate_and_save_cohort_info(
80
+ is_final=False,
81
+ cohort=cohort,
82
+ info_path=json_path,
83
+ is_gene_available=is_gene_available,
84
+ is_trait_available=is_trait_available
85
+ )
86
+
87
+ # Step 4: If trait data is available, extract clinical features, preview, and save
88
+ if trait_row is not None:
89
+ df_clinical = geo_select_clinical_features(
90
+ clinical_df=clinical_data,
91
+ trait=trait,
92
+ trait_row=trait_row,
93
+ convert_trait=convert_trait,
94
+ age_row=age_row,
95
+ convert_age=convert_age,
96
+ gender_row=gender_row,
97
+ convert_gender=convert_gender
98
+ )
99
+ preview_result = preview_df(df_clinical)
100
+ print("Clinical Data Preview:", preview_result)
101
+
102
+ df_clinical.to_csv(out_clinical_data_file, index=False)
103
+ # STEP3
104
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
105
+ gene_data = get_genetic_data(matrix_file)
106
+
107
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
108
+ print(gene_data.index[:20])
109
+ # These are Affymetrix probe IDs, not human gene symbols, so they need to be mapped
110
+ requires_gene_mapping = True
111
+ # STEP5
112
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
113
+ gene_annotation = get_gene_annotation(soft_file)
114
+
115
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
116
+ print("Gene annotation preview:")
117
+ print(preview_df(gene_annotation))
118
+ # Gene Identifier Mapping
119
+
120
+ # 1. Identify the columns in the annotation that match the probe IDs and the gene symbols
121
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
122
+
123
+ # 2. Convert probe-level measurements to gene-level expression data
124
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
125
+ # STEP7
126
+
127
+ # 1. Normalize the obtained gene data and save
128
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
129
+ normalized_gene_data.to_csv(out_gene_data_file)
130
+
131
+ # Use the clinical dataframe from STEP 2 (df_clinical) instead of the undefined selected_clinical_df
132
+ clinical_selected_df = df_clinical
133
+
134
+ # 2. Link clinical and gene expression data on sample IDs
135
+ linked_data = geo_link_clinical_genetic_data(clinical_selected_df, normalized_gene_data)
136
+
137
+ # 3. Handle missing values systematically using the trait column name in the 'trait' variable
138
+ linked_data = handle_missing_values(linked_data, trait)
139
+
140
+ # 4. Check for biased features (trait, age, gender) using the same trait column name
141
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
142
+
143
+ # 5. Final quality validation and record metadata
144
+ is_usable = validate_and_save_cohort_info(
145
+ is_final=True,
146
+ cohort=cohort,
147
+ info_path=json_path,
148
+ is_gene_available=True,
149
+ is_trait_available=True,
150
+ is_biased=is_trait_biased,
151
+ df=linked_data,
152
+ note=f"Preprocessed with trait column named '{trait}'."
153
+ )
154
+
155
+ # 6. If usable, save linked data
156
+ if is_usable:
157
+ linked_data.to_csv(out_data_file, index=True)
p1/preprocess/Sjögrens_Syndrome/code/GSE51092.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sjögrens_Syndrome"
6
+ cohort = "GSE51092"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sjögrens_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Sjögrens_Syndrome/GSE51092"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sjögrens_Syndrome/GSE51092.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sjögrens_Syndrome/gene_data/GSE51092.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sjögrens_Syndrome/clinical_data/GSE51092.csv"
16
+ json_path = "./output/preprocess/1/Sjögrens_Syndrome/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # Step 1: Determine if gene expression data is available
37
+ # Based on the background info mentioning gene expression data, we set:
38
+ is_gene_available = True
39
+
40
+ # Step 2: Assess availability of trait, age, and gender variables
41
+ # From the sample characteristics dictionary, only one key (0) exists, which records disease state.
42
+ # We map it as the trait row because it has two distinct values ("none" and "Sjögrens syndrome").
43
+ # No other keys exist for age or gender.
44
+ trait_row = 0
45
+ age_row = None
46
+ gender_row = None
47
+
48
+ # Data type conversion functions
49
+
50
+ def convert_trait(value: str):
51
+ """
52
+ Convert the trait field to binary:
53
+ 'disease state: none' -> 0
54
+ 'disease state: Sjögrens syndrome' -> 1
55
+ Otherwise, return None.
56
+ """
57
+ # Extract the substring after the first colon if it exists
58
+ parts = value.split(':', 1)
59
+ if len(parts) < 2:
60
+ return None
61
+ raw_val = parts[1].strip().lower()
62
+ if "none" in raw_val:
63
+ return 0
64
+ elif "sjögrens syndrome" in raw_val:
65
+ return 1
66
+ return None
67
+
68
+ def convert_age(value: str):
69
+ # Age data is not available in this dataset, so we return None
70
+ return None
71
+
72
+ def convert_gender(value: str):
73
+ # Gender data is not available, so return None
74
+ return None
75
+
76
+ # Step 3: Save metadata with initial filtering
77
+ # Trait availability is determined by trait_row != None.
78
+ is_trait_available = (trait_row is not None)
79
+
80
+ is_usable = validate_and_save_cohort_info(
81
+ is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=is_trait_available
86
+ )
87
+
88
+ # Step 4: If trait data is available, extract clinical features
89
+ if trait_row is not None:
90
+ # 'clinical_data' is the DataFrame with sample characteristics obtained in a previous step
91
+ selected_clinical_df = geo_select_clinical_features(
92
+ clinical_df=clinical_data,
93
+ trait=trait,
94
+ trait_row=trait_row,
95
+ convert_trait=convert_trait,
96
+ age_row=age_row,
97
+ convert_age=convert_age,
98
+ gender_row=gender_row,
99
+ convert_gender=convert_gender
100
+ )
101
+ # Preview the resulting clinical data
102
+ print(preview_df(selected_clinical_df))
103
+ # Save the clinical data
104
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
105
+ # STEP3
106
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
107
+ gene_data = get_genetic_data(matrix_file)
108
+
109
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
110
+ print(gene_data.index[:20])
111
+ # These identifiers appear to be Illumina probe IDs and not direct human gene symbols.
112
+ # Therefore, mapping to gene symbols is required.
113
+
114
+ print("requires_gene_mapping = True")
115
+ # STEP5
116
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
117
+ gene_annotation = get_gene_annotation(soft_file)
118
+
119
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
120
+ print("Gene annotation preview:")
121
+ print(preview_df(gene_annotation))
122
+ # STEP: Gene Identifier Mapping
123
+
124
+ # 1. Identify the corresponding columns in the annotation DataFrame
125
+ # The column "ID" in the annotation matches the probe IDs in the gene expression dataset,
126
+ # and "Symbol" is the column storing the gene symbols.
127
+ prob_col = "ID"
128
+ gene_col = "Symbol"
129
+
130
+ # 2. Build the mapping dataframe from 'gene_annotation'
131
+ mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
132
+
133
+ # 3. Convert the probe-level measurements in 'gene_data' to gene-level expression data
134
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
135
+ # STEP7
136
+
137
+ # 1. Normalize the obtained gene data and save
138
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ normalized_gene_data.to_csv(out_gene_data_file)
140
+
141
+ # Replace the undefined variable with the correct name from previous steps
142
+ clinical_selected_df = selected_clinical_df
143
+
144
+ # 2. Link clinical and gene expression data on sample IDs
145
+ linked_data = geo_link_clinical_genetic_data(clinical_selected_df, normalized_gene_data)
146
+
147
+ # 3. Handle missing values systematically using the trait column name in the 'trait' variable
148
+ linked_data = handle_missing_values(linked_data, trait)
149
+
150
+ # 4. Check for biased features (trait, age, gender) using the same trait column name
151
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
152
+
153
+ # 5. Final quality validation and record metadata
154
+ is_usable = validate_and_save_cohort_info(
155
+ is_final=True,
156
+ cohort=cohort,
157
+ info_path=json_path,
158
+ is_gene_available=True,
159
+ is_trait_available=True,
160
+ is_biased=is_trait_biased,
161
+ df=linked_data,
162
+ note=f"Preprocessed with trait column named '{trait}'."
163
+ )
164
+
165
+ # 6. If usable, save linked data
166
+ if is_usable:
167
+ linked_data.to_csv(out_data_file, index=True)
p1/preprocess/Sjögrens_Syndrome/code/GSE66795.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sjögrens_Syndrome"
6
+ cohort = "GSE66795"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sjögrens_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Sjögrens_Syndrome/GSE66795"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sjögrens_Syndrome/GSE66795.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sjögrens_Syndrome/gene_data/GSE66795.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sjögrens_Syndrome/clinical_data/GSE66795.csv"
16
+ json_path = "./output/preprocess/1/Sjögrens_Syndrome/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # This dataset uses whole genome microarray, so it's likely to have gene expression data.
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+ # Based on the sample characteristics:
41
+ # - trait_row=2, because "patient group: Control/Patient" maps to presence/absence of Sjögrens_Syndrome.
42
+ # - age_row=None, as age data is not identified.
43
+ # - gender_row=None, because the dataset appears to have only females (constant feature).
44
+ trait_row = 2
45
+ age_row = None
46
+ gender_row = None
47
+
48
+ def convert_trait(x: str):
49
+ """
50
+ Convert the variable in row 2 to binary for Sjögrens_Syndrome.
51
+ The raw string format is typically "patient group: Control" or "patient group: Patient".
52
+ """
53
+ parts = x.split(":", 1)
54
+ if len(parts) < 2:
55
+ return None
56
+ val = parts[1].strip().lower()
57
+ if val == "control":
58
+ return 0
59
+ elif val == "patient":
60
+ return 1
61
+ return None
62
+
63
+ # No age or gender data available, so we won't define conversions for them.
64
+ convert_age = None
65
+ convert_gender = None
66
+
67
+ # 3. Perform initial filtering and save metadata
68
+ is_trait_available = (trait_row is not None)
69
+ is_usable = validate_and_save_cohort_info(
70
+ is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=is_trait_available
75
+ )
76
+
77
+ # 4. Clinical Feature Extraction (only if trait data is available)
78
+ if trait_row is not None:
79
+ selected_clinical_df = geo_select_clinical_features(
80
+ clinical_data,
81
+ trait=trait,
82
+ trait_row=trait_row,
83
+ convert_trait=convert_trait,
84
+ age_row=age_row,
85
+ convert_age=convert_age,
86
+ gender_row=gender_row,
87
+ convert_gender=convert_gender
88
+ )
89
+ # Preview
90
+ preview_result = preview_df(selected_clinical_df)
91
+ # Save the clinical data
92
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
93
+ # STEP3
94
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
95
+ gene_data = get_genetic_data(matrix_file)
96
+
97
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
98
+ print(gene_data.index[:20])
99
+ # These 'ILMN_' identifiers are Illumina probe IDs, not standard gene symbols.
100
+ # Therefore, they need to be mapped to proper gene symbols.
101
+
102
+ print("requires_gene_mapping = True")
103
+ # STEP5
104
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
105
+ gene_annotation = get_gene_annotation(soft_file)
106
+
107
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
108
+ print("Gene annotation preview:")
109
+ print(preview_df(gene_annotation))
110
+ # STEP: Gene Identifier Mapping
111
+
112
+ # 1 & 2. Decide which columns in the gene_annotation dataframe correspond to
113
+ # the probe identifiers and the gene symbols. Then create a mapping dataframe.
114
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
115
+
116
+ # 3. Convert probe-level measurements to gene-level expression data.
117
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
118
+ # STEP7
119
+
120
+ # 1. Normalize the obtained gene data and save
121
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
122
+ normalized_gene_data.to_csv(out_gene_data_file)
123
+
124
+ # Replace the undefined variable with the correct name from previous steps
125
+ clinical_selected_df = selected_clinical_df
126
+
127
+ # 2. Link clinical and gene expression data on sample IDs
128
+ linked_data = geo_link_clinical_genetic_data(clinical_selected_df, normalized_gene_data)
129
+
130
+ # 3. Handle missing values systematically using the trait column name in the 'trait' variable
131
+ linked_data = handle_missing_values(linked_data, trait)
132
+
133
+ # 4. Check for biased features (trait, age, gender) using the same trait column name
134
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
135
+
136
+ # 5. Final quality validation and record metadata
137
+ is_usable = validate_and_save_cohort_info(
138
+ is_final=True,
139
+ cohort=cohort,
140
+ info_path=json_path,
141
+ is_gene_available=True,
142
+ is_trait_available=True,
143
+ is_biased=is_trait_biased,
144
+ df=linked_data,
145
+ note=f"Preprocessed with trait column named '{trait}'."
146
+ )
147
+
148
+ # 6. If usable, save linked data
149
+ if is_usable:
150
+ linked_data.to_csv(out_data_file, index=True)
p1/preprocess/Sjögrens_Syndrome/code/GSE84844.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sjögrens_Syndrome"
6
+ cohort = "GSE84844"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sjögrens_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Sjögrens_Syndrome/GSE84844"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sjögrens_Syndrome/GSE84844.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sjögrens_Syndrome/gene_data/GSE84844.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sjögrens_Syndrome/clinical_data/GSE84844.csv"
16
+ json_path = "./output/preprocess/1/Sjögrens_Syndrome/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Gene Expression Data Availability
37
+ # Based on the background info (whole-blood transcriptome), we set:
38
+ is_gene_available = True
39
+
40
+ # 2) Variable Availability and Data Type Conversion
41
+
42
+ # 2.1 Data Availability
43
+ # From the sample characteristics dictionary, we see:
44
+ # - Row 0 has "disease: Healthy control" and "disease: primary Sjogren's syndrome" => trait
45
+ # - Row 2 has "age: <value>" => age
46
+ # - Row 3 has "gender: Female" and "gender: Male" => gender
47
+ trait_row = 0
48
+ age_row = 2
49
+ gender_row = 3
50
+
51
+ # 2.2 Data Type Conversion
52
+ def convert_trait(value: str):
53
+ """
54
+ Convert trait to binary:
55
+ - healthy -> 0
56
+ - primary Sjogren's syndrome -> 1
57
+ """
58
+ parts = value.split(":")
59
+ if len(parts) < 2:
60
+ return None
61
+ v = parts[-1].strip().lower()
62
+ if "sjogren" in v or "sjögren" in v:
63
+ return 1
64
+ elif "healthy" in v:
65
+ return 0
66
+ return None
67
+
68
+ def convert_age(value: str):
69
+ """
70
+ Convert age to continuous (int).
71
+ If parsing fails, return None.
72
+ """
73
+ parts = value.split(":")
74
+ if len(parts) < 2:
75
+ return None
76
+ v = parts[-1].strip()
77
+ try:
78
+ return float(v)
79
+ except ValueError:
80
+ return None
81
+
82
+ def convert_gender(value: str):
83
+ """
84
+ Convert gender to binary:
85
+ - female -> 0
86
+ - male -> 1
87
+ """
88
+ parts = value.split(":")
89
+ if len(parts) < 2:
90
+ return None
91
+ v = parts[-1].strip().lower()
92
+ if v == "female":
93
+ return 0
94
+ elif v == "male":
95
+ return 1
96
+ return None
97
+
98
+ # 3) Save Metadata (initial filtering)
99
+ is_trait_available = (trait_row is not None)
100
+ validate_and_save_cohort_info(
101
+ is_final=False,
102
+ cohort=cohort,
103
+ info_path=json_path,
104
+ is_gene_available=is_gene_available,
105
+ is_trait_available=is_trait_available
106
+ )
107
+
108
+ # 4) Clinical Feature Extraction and Preview (only if trait data is available)
109
+ if trait_row is not None:
110
+ selected_clinical_df = geo_select_clinical_features(
111
+ clinical_data,
112
+ trait=trait,
113
+ trait_row=trait_row,
114
+ convert_trait=convert_trait,
115
+ age_row=age_row,
116
+ convert_age=convert_age,
117
+ gender_row=gender_row,
118
+ convert_gender=convert_gender
119
+ )
120
+ preview_output = preview_df(selected_clinical_df)
121
+ print("Preview of Selected Clinical Features:", preview_output)
122
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
123
+ # STEP3
124
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
125
+ gene_data = get_genetic_data(matrix_file)
126
+
127
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
128
+ print(gene_data.index[:20])
129
+ # Observing the identifiers (e.g., '1007_s_at'), they appear to be Affymetrix probe IDs, not human gene symbols.
130
+ # Therefore, gene symbol mapping is required.
131
+ requires_gene_mapping = True
132
+ print("requires_gene_mapping = True")
133
+ # STEP5
134
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
135
+ gene_annotation = get_gene_annotation(soft_file)
136
+
137
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
138
+ print("Gene annotation preview:")
139
+ print(preview_df(gene_annotation))
140
+ # Gene Identifier Mapping
141
+
142
+ # 1) Identify the column in the gene_annotation dataframe that matches the probe IDs in gene_data: "ID"
143
+ # Also identify the column that stores the gene symbols: "Gene Symbol"
144
+
145
+ # 2) Extract the two columns to build the gene mapping dataframe
146
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
147
+
148
+ # 3) Apply the gene mapping to convert probe-level data to gene-level data
149
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
150
+
151
+ # (Optional) Print a small preview to confirm the transformation
152
+ print("Mapped gene expression data (head):")
153
+ print(gene_data.head())
154
+ # STEP7
155
+
156
+ # 1. Normalize the obtained gene data and save
157
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
158
+ normalized_gene_data.to_csv(out_gene_data_file)
159
+
160
+ # Replace the undefined variable with the correct name from previous steps
161
+ clinical_selected_df = selected_clinical_df
162
+
163
+ # 2. Link clinical and gene expression data on sample IDs
164
+ linked_data = geo_link_clinical_genetic_data(clinical_selected_df, normalized_gene_data)
165
+
166
+ # 3. Handle missing values systematically using the trait column name in the 'trait' variable
167
+ linked_data = handle_missing_values(linked_data, trait)
168
+
169
+ # 4. Check for biased features (trait, age, gender) using the same trait column name
170
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
171
+
172
+ # 5. Final quality validation and record metadata
173
+ is_usable = validate_and_save_cohort_info(
174
+ is_final=True,
175
+ cohort=cohort,
176
+ info_path=json_path,
177
+ is_gene_available=True,
178
+ is_trait_available=True,
179
+ is_biased=is_trait_biased,
180
+ df=linked_data,
181
+ note=f"Preprocessed with trait column named '{trait}'."
182
+ )
183
+
184
+ # 6. If usable, save linked data
185
+ if is_usable:
186
+ linked_data.to_csv(out_data_file, index=True)
p1/preprocess/Sjögrens_Syndrome/code/GSE93683.py ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sjögrens_Syndrome"
6
+ cohort = "GSE93683"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sjögrens_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Sjögrens_Syndrome/GSE93683"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sjögrens_Syndrome/GSE93683.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sjögrens_Syndrome/gene_data/GSE93683.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sjögrens_Syndrome/clinical_data/GSE93683.csv"
16
+ json_path = "./output/preprocess/1/Sjögrens_Syndrome/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine if gene expression data is available
37
+ is_gene_available = True # Genome-wide transcriptome arrays indicate gene expression data.
38
+
39
+ # 2. Identify rows for trait, age, and gender based on sample characteristics
40
+ # and define conversion functions.
41
+ trait_row = 0 # 'disease state' row has 'HC' and 'pSS'
42
+ age_row = None # No age data found
43
+ gender_row = None # Only one unique value (Female), not useful for association
44
+
45
+ def convert_trait(value: str):
46
+ parts = value.split(":")
47
+ if len(parts) < 2:
48
+ return None
49
+ v = parts[1].strip().lower()
50
+ if v == "pss":
51
+ return 1
52
+ elif v == "hc":
53
+ return 0
54
+ return None
55
+
56
+ def convert_age(value: str):
57
+ return None # Not used, since age_row is None
58
+
59
+ def convert_gender(value: str):
60
+ return None # Not used, since gender_row is None
61
+
62
+ # 3. Initial filtering and metadata recording
63
+ is_usable = validate_and_save_cohort_info(
64
+ is_final=False,
65
+ cohort=cohort,
66
+ info_path=json_path,
67
+ is_gene_available=is_gene_available,
68
+ is_trait_available=(trait_row is not None)
69
+ )
70
+
71
+ # 4. If trait data exists, extract clinical features and preview/save them
72
+ if trait_row is not None:
73
+ extracted_clinical_data = geo_select_clinical_features(
74
+ clinical_df=clinical_data,
75
+ trait=trait,
76
+ trait_row=trait_row,
77
+ convert_trait=convert_trait,
78
+ age_row=age_row,
79
+ convert_age=convert_age,
80
+ gender_row=gender_row,
81
+ convert_gender=convert_gender
82
+ )
83
+ preview_result = preview_df(extracted_clinical_data)
84
+ print(preview_result)
85
+ extracted_clinical_data.to_csv(out_clinical_data_file, index=False)
86
+ # STEP3
87
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
88
+ gene_data = get_genetic_data(matrix_file)
89
+
90
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
91
+ print(gene_data.index[:20])
92
+ # The identifiers (e.g., '1007_s_at') are typical Affymetrix probe IDs rather than human gene symbols,
93
+ # hence they require mapping to official gene symbols.
94
+ print("requires_gene_mapping = True")
95
+ # STEP5
96
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
97
+ gene_annotation = get_gene_annotation(soft_file)
98
+
99
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
100
+ print("Gene annotation preview:")
101
+ print(preview_df(gene_annotation))
102
+ # STEP6: Gene Identifier Mapping
103
+
104
+ # 1. Identify columns for gene identifier and gene symbol in the gene_annotation DataFrame.
105
+ # The 'ID' column in gene_annotation matches our expression data index, and 'Gene Symbol' contains the gene symbols.
106
+ probe_col = "ID"
107
+ gene_symbol_col = "Gene Symbol"
108
+
109
+ # 2. Get a gene mapping dataframe using the library function get_gene_mapping.
110
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)
111
+
112
+ # 3. Convert probe-level measurements to gene expression data.
113
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
114
+ # STEP7
115
+
116
+ # 1. Normalize the obtained gene data and save
117
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
118
+ normalized_gene_data.to_csv(out_gene_data_file)
119
+
120
+ # Define a local reference to the clinical dataframe we extracted in step 2
121
+ # (assuming "extracted_clinical_data" still exists in the environment).
122
+ clinical_selected_df = extracted_clinical_data
123
+
124
+ # 2. Link clinical and gene expression data on sample IDs
125
+ linked_data = geo_link_clinical_genetic_data(clinical_selected_df, normalized_gene_data)
126
+
127
+ # 3. Handle missing values systematically using the trait column name in the 'trait' variable
128
+ linked_data = handle_missing_values(linked_data, trait)
129
+
130
+ # 4. Check for biased features (trait, age, gender) using the same trait column name
131
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
132
+
133
+ # 5. Final quality validation and record metadata
134
+ is_usable = validate_and_save_cohort_info(
135
+ is_final=True,
136
+ cohort=cohort,
137
+ info_path=json_path,
138
+ is_gene_available=True,
139
+ is_trait_available=True,
140
+ is_biased=is_trait_biased,
141
+ df=linked_data,
142
+ note=f"Preprocessed with trait column named '{trait}'."
143
+ )
144
+
145
+ # 6. If usable, save linked data
146
+ if is_usable:
147
+ linked_data.to_csv(out_data_file, index=True)
p1/preprocess/Sjögrens_Syndrome/code/GSE94510.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sjögrens_Syndrome"
6
+ cohort = "GSE94510"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Sjögrens_Syndrome"
10
+ in_cohort_dir = "../DATA/GEO/Sjögrens_Syndrome/GSE94510"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Sjögrens_Syndrome/GSE94510.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Sjögrens_Syndrome/gene_data/GSE94510.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Sjögrens_Syndrome/clinical_data/GSE94510.csv"
16
+ json_path = "./output/preprocess/1/Sjögrens_Syndrome/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Gene Expression Data Availability
37
+ is_gene_available = True # Based on the Omni/transcriptome details, this dataset likely has gene expression data.
38
+
39
+ # 2) Variable Availability
40
+ # After examining the sample characteristics dictionary, we found:
41
+ # trait data is under key=0 with 2 unique values ("disease: pSS" or "disease: HC"), so trait_row=0.
42
+ # age data is not available, so age_row=None.
43
+ # gender data is constant ("Female"), so it is not usable for association studies, hence gender_row=None.
44
+ trait_row = 0
45
+ age_row = None
46
+ gender_row = None
47
+
48
+ # 2.2) Data Type Conversion Functions
49
+ def convert_trait(value: str):
50
+ """
51
+ Convert 'disease: pSS' to 1 and 'disease: HC' to 0.
52
+ Return None if unknown.
53
+ """
54
+ parts = value.split(":", 1)
55
+ if len(parts) < 2:
56
+ return None
57
+ val = parts[1].strip().lower()
58
+ if val == "pss":
59
+ return 1
60
+ elif val == "hc":
61
+ return 0
62
+ return None
63
+
64
+ def convert_age(value: str):
65
+ """
66
+ No age data available, so always return None.
67
+ """
68
+ return None
69
+
70
+ def convert_gender(value: str):
71
+ """
72
+ No usable gender variation in this dataset, so always return None.
73
+ """
74
+ return None
75
+
76
+ # 3) Save Metadata (Initial Filtering)
77
+ # Trait data is available if trait_row is not None
78
+ is_trait_available = (trait_row is not None)
79
+ validate_and_save_cohort_info(
80
+ is_final=False,
81
+ cohort=cohort,
82
+ info_path=json_path,
83
+ is_gene_available=is_gene_available,
84
+ is_trait_available=is_trait_available
85
+ )
86
+
87
+ # 4) Clinical Feature Extraction
88
+ # Perform this step only if trait_row is not None.
89
+ if trait_row is not None:
90
+ clinical_selected_df = geo_select_clinical_features(
91
+ clinical_df=clinical_data, # 'clinical_data' is assumed to be in the environment
92
+ trait='Disease',
93
+ trait_row=trait_row,
94
+ convert_trait=convert_trait,
95
+ age_row=age_row,
96
+ convert_age=convert_age,
97
+ gender_row=gender_row,
98
+ convert_gender=convert_gender
99
+ )
100
+
101
+ # Preview the extracted clinical features
102
+ preview_result = preview_df(clinical_selected_df, n=5, max_items=200)
103
+ print("Preview of extracted clinical features:", preview_result)
104
+
105
+ # Save the clinical features to CSV
106
+ clinical_selected_df.to_csv(out_clinical_data_file, index=False)
107
+ # STEP3
108
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
109
+ gene_data = get_genetic_data(matrix_file)
110
+
111
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
112
+ print(gene_data.index[:20])
113
+ print("They appear to be Affymetrix probe set identifiers, not standard human gene symbols.")
114
+ print("requires_gene_mapping = True")
115
+ # STEP5
116
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
117
+ gene_annotation = get_gene_annotation(soft_file)
118
+
119
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
120
+ print("Gene annotation preview:")
121
+ print(preview_df(gene_annotation))
122
+ # STEP: Gene Identifier Mapping
123
+
124
+ # 1. Identify the column in 'gene_annotation' that matches the gene expression dataset's "ID" column
125
+ # and the column storing the gene symbols. From the preview, these appear to be 'ID' and 'Gene Symbol'.
126
+ probe_column = "ID"
127
+ symbol_column = "Gene Symbol"
128
+
129
+ # 2. Obtain the mapping dataframe using the get_gene_mapping function
130
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_column, gene_col=symbol_column)
131
+
132
+ # 3. Convert probe-level data to gene-level data by applying the mapping
133
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
134
+ print("Gene-level expression data shape:", gene_data.shape)
135
+ # STEP7
136
+
137
+ # 1. Normalize the obtained gene data and save
138
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ normalized_gene_data.to_csv(out_gene_data_file)
140
+
141
+ # 2. Link clinical and gene expression data (use the correct clinical variable name: clinical_selected_df)
142
+ linked_data = geo_link_clinical_genetic_data(clinical_selected_df, normalized_gene_data)
143
+
144
+ # 3. Handle missing values systematically.
145
+ # The trait column in clinical_selected_df is named "Disease", not the environment variable "trait".
146
+ linked_data = handle_missing_values(linked_data, "Disease")
147
+
148
+ # 4. Check for biased features (trait, age, gender) using "Disease" as the trait column name
149
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, "Disease")
150
+
151
+ # 5. Final quality validation and record metadata
152
+ is_usable = validate_and_save_cohort_info(
153
+ is_final=True,
154
+ cohort=cohort,
155
+ info_path=json_path,
156
+ is_gene_available=True,
157
+ is_trait_available=True,
158
+ is_biased=is_trait_biased,
159
+ df=linked_data,
160
+ note="Preprocessed with trait column named 'Disease'."
161
+ )
162
+
163
+ # 6. If usable, save linked data
164
+ if is_usable:
165
+ linked_data.to_csv(out_data_file, index=True)
p1/preprocess/Sjögrens_Syndrome/code/TCGA.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Sjögrens_Syndrome"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Sjögrens_Syndrome/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Sjögrens_Syndrome/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Sjögrens_Syndrome/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Sjögrens_Syndrome/cohort_info.json"
15
+
16
+ import os
17
+
18
+ # List of subdirectories from the TCGA root directory
19
+ subdirectories = [
20
+ 'TCGA-LGG', 'CrawlData.ipynb', '.DS_Store',
21
+ 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
22
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)',
23
+ 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)',
24
+ 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
25
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)',
26
+ 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)',
27
+ 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
28
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)',
29
+ 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)',
30
+ 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
31
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)',
32
+ 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)',
33
+ 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
34
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)',
35
+ 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)',
36
+ 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
37
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)',
38
+ 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)',
39
+ 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
40
+ ]
41
+
42
+ relevant_folder = None
43
+ for folder in subdirectories:
44
+ folder_lower = folder.lower()
45
+ # Searching for terms like 'sjogren' or 'sicca' to match "Sjögrens_Syndrome"
46
+ if "sjogren" in folder_lower or "sicca" in folder_lower:
47
+ relevant_folder = folder
48
+ break
49
+
50
+ if not relevant_folder:
51
+ # No suitable directory found, we skip this trait
52
+ _ = validate_and_save_cohort_info(
53
+ is_final=False,
54
+ cohort="TCGA",
55
+ info_path=json_path,
56
+ is_gene_available=False,
57
+ is_trait_available=False
58
+ )
59
+ print("No suitable directory found for trait Sjögrens_Syndrome. Skipping this trait.")
60
+ else:
61
+ clinical_file, genetic_file = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, relevant_folder))
62
+
63
+ clinical_data = pd.read_csv(clinical_file, index_col=0, sep='\t')
64
+ genetic_data = pd.read_csv(genetic_file, index_col=0, sep='\t')
65
+
66
+ print("Clinical data columns:", clinical_data.columns.tolist())
p1/preprocess/Sjögrens_Syndrome/gene_data/GSE135809.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f872956c5183040775dc2644bbb1adc5397e7bc257b5cde1d1dbd02ed0ad116e
3
+ size 12770430
p1/preprocess/Sjögrens_Syndrome/gene_data/GSE143153.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Sjögrens_Syndrome/gene_data/GSE40611.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65e211fa77a05c8e3393f7b4102ab36c7010ee4ce32ea0c64db7a26e09ac168e
3
+ size 10808851
p1/preprocess/Sjögrens_Syndrome/gene_data/GSE51092.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7ce24129f9056795e980dd6ff815dbc1187b9aca2135243f666fd5a61d8fdc2
3
+ size 27673057
p1/preprocess/Sjögrens_Syndrome/gene_data/GSE84844.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ced8660c3b6e6942c58aaa28a2c6552ecf30e27516e0077911a72f2f616d504e
3
+ size 15946036
p1/preprocess/Sjögrens_Syndrome/gene_data/GSE93683.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e140dbb88b71e67151974ee622220e2b4c11bec24df485f537a62d43c954d89
3
+ size 12769411
p1/preprocess/Sjögrens_Syndrome/gene_data/GSE94510.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Stomach_Cancer/GSE208099.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Stomach_Cancer/clinical_data/GSE208099.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM6337084,GSM6337085,GSM6337086,GSM6337087,GSM6337088,GSM6337089,GSM6337090,GSM6337091,GSM6337092,GSM6337093,GSM6337094,GSM6337095,GSM6337096,GSM6337097,GSM6337098,GSM6337099,GSM6337100,GSM6337101,GSM6337102,GSM6337103,GSM6337104,GSM6337105,GSM6337106,GSM6337107,GSM6337108,GSM6337109,GSM6337110,GSM6337111,GSM6337112,GSM6337113,GSM6337114,GSM6337115
2
+ 1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0
3
+ 1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Stomach_Cancer/code/GSE118916.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Stomach_Cancer"
6
+ cohort = "GSE118916"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Stomach_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Stomach_Cancer/GSE118916"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Stomach_Cancer/GSE118916.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Stomach_Cancer/gene_data/GSE118916.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Stomach_Cancer/clinical_data/GSE118916.csv"
16
+ json_path = "./output/preprocess/1/Stomach_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Check if the dataset likely contains gene expression data
37
+ is_gene_available = True # Based on the background info, it's microarray gene expression
38
+
39
+ # 2.1 Identify the data availability for each variable
40
+ trait_row = None # No row found for trait (Stomach_Cancer)
41
+ age_row = None # No row found for age
42
+ gender_row = 0 # Row 0 has 2 distinct values ["gender: female", "gender: male"]
43
+
44
+ # 2.2 Define conversion functions for each variable
45
+ def convert_trait(value: str):
46
+ # No trait data found, so always return None
47
+ return None
48
+
49
+ def convert_age(value: str):
50
+ # No age data found, so always return None
51
+ return None
52
+
53
+ def convert_gender(value: str):
54
+ # Extract the part after the colon
55
+ val = value.split(':')[-1].strip().lower()
56
+ if val == 'female':
57
+ return 0
58
+ elif val == 'male':
59
+ return 1
60
+ else:
61
+ return None
62
+
63
+ # 3. Save metadata with initial filtering
64
+ is_trait_available = (trait_row is not None)
65
+ validate_and_save_cohort_info(
66
+ is_final=False,
67
+ cohort=cohort,
68
+ info_path=json_path,
69
+ is_gene_available=is_gene_available,
70
+ is_trait_available=is_trait_available
71
+ )
72
+
73
+ # 4. Since trait_row is None, skip clinical feature extraction
74
+ # STEP3
75
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
76
+ gene_data = get_genetic_data(matrix_file)
77
+
78
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
79
+ print(gene_data.index[:20])
80
+ # These probe set IDs (e.g., "11715100_at") are typically Affymetrix array probe identifiers,
81
+ # not standard human gene symbols. Therefore, they require mapping to gene symbols.
82
+ print("requires_gene_mapping = True")
83
+ # STEP5
84
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
85
+ gene_annotation = get_gene_annotation(soft_file)
86
+
87
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
88
+ print("Gene annotation preview:")
89
+ print(preview_df(gene_annotation))
90
+ # STEP: Gene Identifier Mapping
91
+
92
+ # 1) Determine which columns in the gene_annotation dataframe contain
93
+ # the same identifiers as the gene_data's index and which contain the gene symbols.
94
+ # From the preview, "ID" matches the probe identifiers and "Gene Symbol" contains gene symbols.
95
+
96
+ # 2) Build a gene mapping dataframe by extracting these two columns from gene_annotation.
97
+ mapping_df = get_gene_mapping(gene_annotation, "ID", "Gene Symbol")
98
+
99
+ # 3) Convert probe-level measurements to gene-level measurements.
100
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
101
+ # STEP7
102
+
103
+ # Per the instructions and reviewer's feedback, this dataset does not actually have a trait column.
104
+ # Therefore, we cannot proceed with final validation or linking clinical data based on a non-existent trait.
105
+
106
+ # 1. Normalize the obtained gene data and save.
107
+ # (We can still provide normalized gene expression data even though no trait is available.)
108
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
109
+ normalized_gene_data.to_csv(out_gene_data_file)
110
+
111
+ # Since the trait is not available, we skip final linking, missing-value handling, and final validation steps.
112
+ # We set is_trait_available=False to reflect the actual dataset status.
113
+ # No final validation or saving of linked data will be performed here.
114
+
115
+ is_trait_available = False
116
+ print("Trait is not available => skipping linking, quality checks, and final validation.")
p1/preprocess/Stomach_Cancer/code/GSE128459.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Stomach_Cancer"
6
+ cohort = "GSE128459"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Stomach_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Stomach_Cancer/GSE128459"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Stomach_Cancer/GSE128459.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Stomach_Cancer/gene_data/GSE128459.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Stomach_Cancer/clinical_data/GSE128459.csv"
16
+ json_path = "./output/preprocess/1/Stomach_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ # Based on the background info ("Expression profiling..." in the GEO record), we consider gene expression data present.
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # Inspecting the sample characteristics shows only the following rows:
42
+ # 0 -> ['tissue: Gastric Cancer']
43
+ # 1 -> ['sample type: Cells', 'sample type: Organoids', 'sample type: PR', 'sample type: PRX']
44
+ # All samples appear to be cancer samples, so there's no variation for the trait.
45
+ # No age or gender data is found either.
46
+ trait_row = None # No variation for trait => treat as not available
47
+ age_row = None # No age info available
48
+ gender_row = None # No gender info available
49
+
50
+ # Define data conversion functions as placeholders.
51
+ def convert_trait(value: str):
52
+ """
53
+ Convert trait data to a binary format.
54
+ Since the data is not actually available, we simply parse but ultimately return None here.
55
+ """
56
+ return None
57
+
58
+ def convert_age(value: str):
59
+ """
60
+ Convert age data to a continuous format.
61
+ Since no age data is available, return None.
62
+ """
63
+ return None
64
+
65
+ def convert_gender(value: str):
66
+ """
67
+ Convert gender data to a binary format: female -> 0, male -> 1.
68
+ Since no gender data is available, return None.
69
+ """
70
+ return None
71
+
72
+ # 3. Save Metadata (initial filtering)
73
+ # Trait is not available (trait_row is None), so is_trait_available = False.
74
+ is_trait_available = (trait_row is not None)
75
+
76
+ validate_and_save_cohort_info(
77
+ is_final=False,
78
+ cohort=cohort,
79
+ info_path=json_path,
80
+ is_gene_available=is_gene_available,
81
+ is_trait_available=is_trait_available
82
+ )
83
+
84
+ # 4. Clinical Feature Extraction
85
+ # Since trait_row is None, we skip clinical data extraction.
86
+ # STEP3
87
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
88
+ gene_data = get_genetic_data(matrix_file)
89
+
90
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
91
+ print(gene_data.index[:20])
92
+ # These are Illumina probe IDs, not standard human gene symbols, so mapping is required.
93
+ print("requires_gene_mapping = True")
94
+ # STEP5
95
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
96
+ gene_annotation = get_gene_annotation(soft_file)
97
+
98
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
99
+ print("Gene annotation preview:")
100
+ print(preview_df(gene_annotation))
101
+ # Gene Identifier Mapping
102
+
103
+ # 1) Identify the columns in the gene annotation that match the probe IDs in the expression data
104
+ # and the gene symbols, respectively.
105
+ id_column = "ID"
106
+ symbol_column = "Symbol"
107
+
108
+ # 2) Get a gene mapping dataframe from the annotation dataframe
109
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=id_column, gene_col=symbol_column)
110
+
111
+ # 3) Convert probe-level measurements to gene expression data
112
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
113
+ # STEP7
114
+
115
+ # Since the dataset has no trait data (trait_row was None), we cannot link clinical data
116
+ # or perform trait-based analysis. However, we should still normalize the gene data
117
+ # and record metadata indicating that the dataset is not usable for trait association.
118
+
119
+ # 1) Normalize the obtained gene data
120
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
121
+
122
+ # 2) Save the normalized data as a CSV file
123
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
124
+
125
+ # 3) Perform final validation to record the dataset's unusability for trait analysis
126
+ # We set is_trait_available=False, so it will be deemed not usable.
127
+ # We must still pass is_biased (boolean) and a dataframe. Here we set is_biased=False
128
+ # for consistency, because the absence of the trait is what makes it unusable, not bias.
129
+ validate_and_save_cohort_info(
130
+ is_final=True,
131
+ cohort=cohort,
132
+ info_path=json_path,
133
+ is_gene_available=True,
134
+ is_trait_available=False,
135
+ is_biased=False,
136
+ df=normalized_gene_data,
137
+ note="No trait data available. Only normalized gene data."
138
+ )
139
+
140
+ print("No trait data available; only normalized gene data is saved. Final metadata recorded.")