|
--- |
|
language: |
|
- en |
|
tags: |
|
- inversion |
|
- seismic |
|
- imaging |
|
- subsurface |
|
size_categories: |
|
- 10B<n<100B |
|
viewer: false |
|
--- |
|
|
|
<h1 align="center"> |
|
<span style="font-family: 'Papyrus', sans-serif; color: red; font-weight: bold;">OpenSWI</span>: |
|
<span style="font-family: 'Papyrus', sans-serif; color:rgb(14, 126, 146);">A Massive-Scale Benchmark Dataset for </span> <br> |
|
<span style="font-family: 'Papyrus', sans-serif; color:rgb(14, 126, 146);">Surface Wave Dispersion Curve Inversion</span> |
|
</h1> |
|
|
|
<h5 align="center"><a href="https://liufeng2317.github.io/">Feng Liu</a>, Sijie Zhao, Xinyu Gu, Fenghua Ling, Peiqin Zhuang, Yaxing Li*, Rui Su*, Lihua Fang, Jianping Huang, Lei Bai</h5> |
|
|
|
 |
|
|
|
## 📖 **Overview** |
|
|
|
**OpenSWI** is a comprehensive 1D dataset for surface-wave dispersion curve inversion, specifically designed for both shallow subsurface exploration (\~3 km) and deep geological studies (\~300 km). The dataset contains synthetic data derived from a variety of geological models, as well as real-world observational data, providing an invaluable resource for assessing and enhancing the generalization capabilities of deep learning models. The dataset includes: |
|
|
|
* [**OpenSWI-Shallow**](https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-shallow/0.2-10s-Aug): 1D velocity profiles derived from 2D velocity models (OpenFWI dataset), paired with corresponding surface wave dispersion curves. |
|
* [**OpenSWI-Deep**](https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-deep/1s-100s-Aug): 1D velocity profiles generated from high-resolution 3D geological models, sourced globally and regionally, tailored for deep geological studies. |
|
* [**OpenSWI-Real**](https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-real): AI-ready observational data from Long Beach, USA, and the China Seismological Reference Model Project, with 1D velocity profiles and corresponding surface wave dispersion curves. |
|
|
|
These datasets are ideal for training and evaluating deep learning models focused on surface-wave dispersion curve inversion tasks. |
|
|
|
--- |
|
|
|
## 📊 **OpenSWI Datasets** |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Group</th> |
|
<th>Datasets</th> |
|
<th>Period Range (s)</th> |
|
<th>Depth Range and Interval (km)</th> |
|
<th>Extracted 1D Velocity</th> |
|
<th>Augmented 1D Velocity</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
|
|
<tr> |
|
<td rowspan="5"><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-shallow/0.2-10s-Aug">OpenSWI-shallow</a></td> |
|
<td>OpenFWI-FlatVelA</td> |
|
<td>0.1-10 s</td> |
|
<td>0-2.8 km / 0.04 km</td> |
|
<td>30,000 x 4 x 70</td> |
|
<td>1,490,415 x 4 x 70</td> |
|
</tr> |
|
<tr> |
|
<td>OpenFWI-Flat-FaultA</td> |
|
<td>0.1-10 s</td> |
|
<td>0-2.8 km / 0.04 km</td> |
|
<td>292,941 x 4 x 70</td> |
|
<td>2,925,151 x 4 x 70</td> |
|
</tr> |
|
<tr> |
|
<td>OpenFWI-CurveVel</td> |
|
<td>0.1-10 s</td> |
|
<td>0-2.8 km / 0.04 km</td> |
|
<td>295,773 x 4 x 70</td> |
|
<td>2,952,975 x 4 x 70</td> |
|
</tr> |
|
<tr> |
|
<td>OpenFWI-Fold-Fault</td> |
|
<td>0.1-10 s</td> |
|
<td>0-2.8 km / 0.04 km</td> |
|
<td>537,774 x 4 x 70</td> |
|
<td>5,369,692 x 4 x 70</td> |
|
</tr> |
|
<tr> |
|
<td>OpenFWI-StyleA</td> |
|
<td>0.1-10 s</td> |
|
<td>0-2.8 km / 0.04 km</td> |
|
<td>2,344,958 x 4 x 70</td> |
|
<td>9,345,103 x 4 x 70</td> |
|
</tr> |
|
|
|
<tr> |
|
<td rowspan="14"><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-deep/1s-100s-Aug">OpenSWI-deep</a></td> |
|
<td>LITHO1.0</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>40,959 x 4 x 300</td> |
|
<td>245,771 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>USTClitho1.0</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>9,125 x 4 x 300</td> |
|
<td>54,750 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>Central-and-Western US</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>6,803 x 4 x 300</td> |
|
<td>40,818 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>Continental China</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>4,516 x 4 x 300</td> |
|
<td>27,096 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>US Upper-Mantle</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>3,678 x 4 x 300</td> |
|
<td>22,061 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>EUcrust</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>43,520 x 4 x 300</td> |
|
<td>261,155 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>Alaska</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>19,408 x 4 x 300</td> |
|
<td>116,448 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>CSEM-Europe</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>21,931 x 4 x 300</td> |
|
<td>131,586 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>CSEM-Eastmed</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>12,782 x 4 x 300</td> |
|
<td>76,692 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>CSEM-Iberian</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>9,102 x 4 x 300</td> |
|
<td>54,612 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>CSEM-South Atlantic</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>7,371 x 4 x 300</td> |
|
<td>44,226 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>CSEM-North Atlantic</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>14,541 x 4 x 300</td> |
|
<td>87,246 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>CSEM-Japan</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>14,641 x 4 x 300</td> |
|
<td>87,846 x 4 x 301</td> |
|
</tr> |
|
<tr> |
|
<td>CSEM-Astralasia</td> |
|
<td>1-100 s</td> |
|
<td>0-300 km / 1.0 km</td> |
|
<td>4,131 x 4 x 300</td> |
|
<td>24,786 x 4 x 301</td> |
|
</tr> |
|
|
|
<tr> |
|
<td rowspan="2"><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-real/">OpenSWI-real</a></td> |
|
<td><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-real/LongBeach">LongBeach</a></td> |
|
<td>0.263 - 1.666 s</td> |
|
<td>0-1.4 km / 0.04 km</td> |
|
<td>5,297 x 4 x 35</td> |
|
<td>-</td> |
|
</tr> |
|
<tr> |
|
<td><a href="https://huggingface.co/datasets/LiuFeng2317/OpenSWI/tree/main/Datasets/OpenSWI-real/CSRM">CSRM</a></td> |
|
<td>8 - 70 s</td> |
|
<td>0-120 km / 1.0 km</td> |
|
<td>12,901 x 4 x 120</td> |
|
<td>-</td> |
|
</tr> |
|
|
|
</tbody> |
|
</table> |
|
|
|
> Details of the source of datasets can be found at [OpenSWI](./Datasets/README.md) |
|
|
|
### 🏞️ **OpenSWI-Shallow** |
|
|
|
* **Resource Models**: Includes diverse geological features such as flat layers, faults, folds, and their combinations, representing typical shallow subsurface structures. |
|
* **Profiles**: |
|
|
|
* **~22 million 1D velocity profiles**, each paired with corresponding **Rayleigh wave dispersion curves**. |
|
* The dataset spans a **period range from 0.2 to 10 seconds** and covers **100 sampling points** (including uniform, random, and logarithmic distributions) for each dispersion curve. This variety ensures robust training and evaluation across different geological scenarios. |
|
* **Geological Diversity**: The models include a broad spectrum of real-world shallow subsurface structures, such as: |
|
|
|
* **Flat Layers** |
|
* **Faulted Layers (Flat-Fault)** |
|
* **Folds** |
|
* **Folds with Faults (Fold-Fault)** |
|
* **Real Style (Field)** |
|
|
|
These diverse models make the dataset highly applicable for both synthetic and real-world seismic data inversion tasks. |
|
|
|
--- |
|
|
|
### 🌍 **OpenSWI-Deep** |
|
|
|
* **Resource Models**: Includes over **14 global and regional 3D geological models**, derived from high-resolution seismic data. These models represent deep geological structures, from the crust to the mantle, spanning a variety of tectonic settings and geological environments. |
|
* **Profiles**: |
|
|
|
* **~1.26 million 1D velocity profiles**, derived from the 3D models. |
|
* The profiles span a **period range from 1 to 100 seconds**, covering **300 sampling points** (including uniform, random, and logarithmic distributions) for each dispersion curve. |
|
* These profiles offer high-resolution data suitable for deep geological studies and support advanced seismic inversion techniques. |
|
|
|
* **Geological Diversity**: The 3D models come from various sources, including well-established models such as: |
|
* **LITHO1.0** (Pasyanos et al., 2014) |
|
* **USTClitho1.0** (Xin et al., 2018) |
|
* **Central and Western US Models** (Shen et al., 2013) |
|
* **Continental China** (Shen et al., 2016) |
|
* **US Upper-Mantle Model** (Xie et al., 2018) |
|
* **EUcrust Model** (Lu et al., 2018) |
|
* **Alaska Model** (Berg et al., 2020) |
|
* **CSEM-Europe Model** (Blom et al., 2020; Fichtner et al., 2018; Çubuk-Sabuncu et al., 2017) |
|
* **CSEM Eastern Mediterranean Model** (Blom et al., 2020; Fichtner et al., 2018) |
|
* **CSEM Western Mediterranean Model** (Fichtner et al., 2018; Fichtner et al., 2015) |
|
* **CSEM South Atlantic Model** (Fichtner et al., 2018; Colli et al., 2013) |
|
* **CSEM North Atlantic Model** (Fichtner et al., 2018; Krischer et al., 2018) |
|
* **CSEM Japanese Island Model** (Fichtner et al., 2018; Simutė et al., 2016) |
|
* **CSEM Australasian Model** (Fichtner et al., 2018; Fichtner et al., 2010) |
|
|
|
These models provide a comprehensive representation of both regional and global deep geological structures, enhancing the dataset’s value for training deep learning models on complex inversion tasks. |
|
|
|
--- |
|
|
|
### 🏔️ **OpenSWI-Real** |
|
|
|
* **Long Beach, USA (Fu et al., 2022)**: |
|
|
|
* Contains **5,297 stations**, each with phase velocity dispersion curves. |
|
* The **period range** for the curves is **0.263 to 1.666 seconds**, focusing on shallow subsurface structures. |
|
* This dataset provides real-world observational data for evaluating model performance and generalization in seismic inversion tasks. |
|
|
|
* **China Seismological Reference Model (Xiao et al., 2024)**: |
|
|
|
* Includes **12,901 grid points**, each with phase and group velocity dispersion curves. |
|
* The **period range** for these curves is **8 to 70 seconds**, ideal for studying deeper geological structures. |
|
* Data is sourced from a dense network of seismic stations across mainland China, offering comprehensive coverage for advanced inversion tasks. |
|
|
|
---- |
|
|
|
## 📧 **Contact** |
|
|
|
**Principal Developer** |
|
|
|
[Feng Liu](https://liufeng2317.github.io/) |
|
|
|
🏛️ Affiliations: |
|
- Shanghai Artificial Intelligence Laboratory |
|
- Shanghai Jiao Tong University |
|
|
|
📧 **Contact Information**: |
|
- [](mailto:[email protected]) |
|
- [](mailto:[email protected]) |
|
|
|
|
|
---- |
|
|
|
## 📚 **Citation** |
|
|
|
If you use this dataset in your research, please cite: |
|
|
|
```bibtex |
|
@software{liufeng_2025_openswi, |
|
title={OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion}, |
|
author={Feng Liu, Sijie Zhao, Xinyu Gu, Fenghua Ling, Peiqin Zhuang, Yaxing Li, Rui Su, Lihua Fang, Jianping Huang, Lei Bai}, |
|
year={2025}, |
|
} |
|
``` |
|
|
|
---- |
|
|
|
|
|
## 📝 **License** |
|
|
|
Released under the **CC BY 4.0 License**. See the full license in the repository. |
|
|
|
|
|
--- |
|
## 🔍 **Reference** |
|
<details> |
|
<summary>Click to expand related works</summary> |
|
|
|
1. **X. Xiao et al.**, "CSRM‐1.0: A China Seismological Reference Model," *JGR Solid Earth*, vol. 129, no. 9, p. e2024JB029520, Sept. 2024, [doi: 10.1029/2024JB029520](https://doi.org/10.1029/2024JB029520). |
|
|
|
2. **L. Fu et al.**, "Improved high‐resolution 3D vs model of Long Beach, CA: Inversion of multimodal dispersion curves from ambient noise of a dense array," *Geophys. Res. Lett.*, vol. 49, no. 4, p. e2021GL097619, Feb. 2022, [doi: 10.1029/2021GL097619](https://doi.org/10.1029/2021GL097619). |
|
|
|
3. **C. Deng et al.**, “OpenFWI: Large-scale multi-structural benchmark datasets for full waveform inversion,” *Neural Information Processing Systems*, Nov. 2021, Accessed: Feb. 29, 2024. [Online]. Available: [https://www.semanticscholar.org/paper/2d13799dcbd0aefb08c379f58cd6004b1376ca33](https://www.semanticscholar.org/paper/2d13799dcbd0aefb08c379f58cd6004b1376ca33) |
|
|
|
4. **N. Blom et al.**, "Seismic waveform tomography of the central and eastern Mediterranean upper mantle," *Solid Earth*, vol. 11, no. 2, pp. 669–690, Apr. 2020, [doi: 10.5194/se-11-669-2020](https://doi.org/10.5194/se-11-669-2020). |
|
|
|
5. **E. M. Berg et al.**, "Shear velocity model of Alaska via joint inversion of Rayleigh wave ellipticity, phase velocities, and receiver functions across the Alaska transportable array," *J. Geophys. Res.: Solid Earth*, vol. 125, no. 2, Feb. 2020, [doi: 10.1029/2019jb018582](https://doi.org/10.1029/2019jb018582). |
|
|
|
6. **H. Xin et al.**, "High‐resolution lithospheric velocity structure of continental China by double‐difference seismic travel‐time tomography," *Seismol. Res. Lett.*, vol. 90, no. 1, pp. 229–241, Jan. 2019, [doi: 10.1785/0220180209](https://doi.org/10.1785/0220180209). |
|
|
|
7. **J. Xie et al.**, "3-D upper-mantle shear velocity model beneath the contiguous United States based on broadband surface wave from ambient seismic noise," *Pure Appl. Geophys.*, vol. 175, no. 10, pp. 3403–3418, Oct. 2018, [doi: 10.1007/s00024-018-1881-2](https://doi.org/10.1007/s00024-018-1881-2). |
|
|
|
8. **Y. Lu et al.**, "High-resolution surface wave tomography of the European crust and uppermost mantle from ambient seismic noise," *Geophys. J. Int.*, vol. 214, no. 2, pp. 1136–1150, Aug. 2018, [doi: 10.1093/gji/ggy188](https://doi.org/10.1093/gji/ggy188). |
|
|
|
9. **L. Krischer et al.**, "Automated large‐scale full seismic waveform inversion for North America and the North Atlantic," *J. Geophys. Res.: Solid Earth*, vol. 123, no. 7, pp. 5902–5928, July 2018, [doi: 10.1029/2017JB015289](https://doi.org/10.1029/2017JB015289). |
|
|
|
10. **A. Fichtner et al.**, "The collaborative seismic earth model: generation 1," *Geophys. Res. Lett.*, vol. 45, no. 9, pp. 4007–4016, May 2018, [doi: 10.1029/2018gl077338](https://doi.org/10.1029/2018gl077338). |
|
|
|
11. **Y. Çubuk-Sabuncu et al.**, "3-D crustal velocity structure of western Turkey: constraints from full-waveform tomography," *Phys. Earth Planet. Inter.*, vol. 270, pp. 90–112, Sept. 2017, [doi: 10.1016/j.pepi.2017.06.014](https://doi.org/10.1016/j.pepi.2017.06.014). |
|
|
|
12. **S. Simutė et al.**, "Full‐waveform inversion of the Japanese islands region," *J. Geophys. Res.: Solid Earth*, vol. 121, no. 5, pp. 3722–3741, May 2016, [doi: 10.1002/2016jb012802](https://doi.org/10.1002/2016jb012802). |
|
|
|
13. **W. Shen et al.**, "A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion," *Geophys. J. Int.*, vol. 206, no. 2, pp. 954–979, Aug. 2016, [doi: 10.1093/gji/ggw175](https://doi.org/10.1093/gji/ggw175). |
|
|
|
14. **A. Fichtner and A. Villaseñor**, "Crust and upper mantle of the western Mediterranean – constraints from full-waveform inversion," *Earth Planet. Sci. Lett.*, vol. 428, pp. 52–62, Oct. 2015, [doi: 10.1016/j.epsl.2015.07.038](https://doi.org/10.1016/j.epsl.2015.07.038). |
|
|
|
15. **M. E. Pasyanos et al.**, "LITHO1.0: An updated crust and lithospheric model of the Earth," *JGR Solid Earth*, vol. 119, no. 3, pp. 2153–2173, Mar. 2014, [doi: 10.1002/2013JB010626](https://doi.org/10.1002/2013JB010626). |
|
|
|
16. **W. Shen et al.**, "A 3‐D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion," *JGR Solid Earth*, vol. 118, no. 1, pp. 262–276, Jan. 2013, [doi: 10.1029/2012JB009602](https://doi.org/10.1029/2012JB009602). |
|
|
|
17. **F. Rickers et al.**, "The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion," *Earth Planet. Sci. Lett.*, vol. 367, pp. 39–51, Apr. 2013, [doi: 10.1016/j.epsl.2013.02.022](https://doi.org/10.1016/j.epsl.2013.02.022). |
|
|
|
18. **L. Colli et al.**, "Full waveform tomography of the upper mantle in the South Atlantic region: imaging a westward fluxing shallow asthenosphere?," *Tectonophysics*, vol. 604, pp. 26–40, Sept. 2013, [doi: 10.1016/j.tecto.2013.06.015](https://doi.org/10.1016/j.tecto.2013.06.015). |
|
|
|
19. **C. Trabant et al.**, "Data products at the IRIS DMC: stepping stones for research and other applications," *Seismol. Res. Lett.*, vol. 83, no. 5, pp. 846–854, Sept. 2012, [doi: 10.1785/0220120032](https://doi.org/10.1785/0220120032). |
|
|
|
20. **A. Fichtner et al.**, "Full waveform tomography for radially anisotropic structure: new insights into present and past states of the Australasian upper mantle," *Earth Planet. Sci. Lett.*, vol. 290, no. 3–4, pp. 270–280, Feb. 2010, [doi: 10.1016/j.epsl.2009.12.003](https://doi.org/10.1016/j.epsl.2009.12.003). |
|
|
|
21. **A. Fichtner et al.**, "Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods," *Geophys. J. Int.*, vol. 179, no. 3, pp. 1703–1725, Dec. 2009, [doi: 10.1111/j.1365-246x.2009.04368.x](https://doi.org/10.1111/j.1365-246x.2009.04368.x). |
|
|
|
|
|
</details> |