liufeng
commited on
Commit
·
7af9850
1
Parent(s):
5b6026c
update: readme
Browse files- Datasets/README.md +1 -1
- README.md +16 -16
Datasets/README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
<h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
|
2 |
-
<h5 align="center">Feng Liu
|
3 |
|
4 |
### Source of the OpenSWI
|
5 |
|
|
|
1 |
<h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
|
2 |
+
<h5 align="center"><a href="https://liufeng2317.github.io/">Feng Liu</a>, Sijie Zhao, Xinyu Gu, Fenghua Lin, Peiqin Zhuang, Rui Su*, Yaxing Li*, Jianping Huang, Lei Bai</h5>
|
3 |
|
4 |
### Source of the OpenSWI
|
5 |
|
README.md
CHANGED
@@ -12,7 +12,7 @@ viewer: false
|
|
12 |
---
|
13 |
|
14 |
<h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
|
15 |
-
<h5 align="center"><a href="https://liufeng2317.github.io/">Feng Liu</a>, Sijie Zhao, Xinyu Gu, Fenghua Lin,
|
16 |
|
17 |

|
18 |
|
@@ -210,9 +210,9 @@ These datasets are ideal for training and evaluating deep learning models focuse
|
|
210 |
* The dataset spans a **period range from 0.2 to 10 seconds** and covers **100 sampling points** (including uniform, random, and logarithmic distributions) for each dispersion curve. This variety ensures robust training and evaluation across different geological scenarios.
|
211 |
* **Geological Diversity**: The models include a broad spectrum of real-world shallow subsurface structures, such as:
|
212 |
|
213 |
-
* **Flat Layers
|
214 |
* **Faulted Layers (Flat-Fault)**
|
215 |
-
* **Folds
|
216 |
* **Folds with Faults (Fold-Fault)**
|
217 |
* **Real Style (Field)**
|
218 |
|
@@ -228,22 +228,22 @@ These diverse models make the dataset highly applicable for both synthetic and r
|
|
228 |
* **~1.26 million 1D velocity profiles**, derived from the 3D models.
|
229 |
* The profiles span a **period range from 1 to 100 seconds**, covering **300 sampling points** (including uniform, random, and logarithmic distributions) for each dispersion curve.
|
230 |
* These profiles offer high-resolution data suitable for deep geological studies and support advanced seismic inversion techniques.
|
231 |
-
* **Geological Diversity**: The 3D models come from various sources, including well-established models such as:
|
232 |
|
233 |
-
|
234 |
-
* **
|
|
|
235 |
* **Central and Western US Models** (Shen et al., 2013)
|
236 |
* **Continental China** (Shen et al., 2016)
|
237 |
-
* **US Upper-Mantle Model**
|
238 |
-
* **EUcrust Model**
|
239 |
-
* **Alaska Model**
|
240 |
-
* **CSEM-Europe Model**
|
241 |
-
* **CSEM Eastern Mediterranean Model**
|
242 |
-
* **CSEM Western Mediterranean Model**
|
243 |
-
* **CSEM South Atlantic Model**
|
244 |
-
* **CSEM North Atlantic Model**
|
245 |
-
* **CSEM Japanese Island Model**
|
246 |
-
* **CSEM Australasian Model**
|
247 |
|
248 |
These models provide a comprehensive representation of both regional and global deep geological structures, enhancing the dataset’s value for training deep learning models on complex inversion tasks.
|
249 |
|
|
|
12 |
---
|
13 |
|
14 |
<h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
|
15 |
+
<h5 align="center"><a href="https://liufeng2317.github.io/">Feng Liu</a>, Sijie Zhao, Xinyu Gu, Fenghua Lin, Peiqin Zhuang, Rui Su*, Yaxing Li*, Jianping Huang, Lei Bai</h5>
|
16 |
|
17 |

|
18 |
|
|
|
210 |
* The dataset spans a **period range from 0.2 to 10 seconds** and covers **100 sampling points** (including uniform, random, and logarithmic distributions) for each dispersion curve. This variety ensures robust training and evaluation across different geological scenarios.
|
211 |
* **Geological Diversity**: The models include a broad spectrum of real-world shallow subsurface structures, such as:
|
212 |
|
213 |
+
* **Flat Layers**
|
214 |
* **Faulted Layers (Flat-Fault)**
|
215 |
+
* **Folds**
|
216 |
* **Folds with Faults (Fold-Fault)**
|
217 |
* **Real Style (Field)**
|
218 |
|
|
|
228 |
* **~1.26 million 1D velocity profiles**, derived from the 3D models.
|
229 |
* The profiles span a **period range from 1 to 100 seconds**, covering **300 sampling points** (including uniform, random, and logarithmic distributions) for each dispersion curve.
|
230 |
* These profiles offer high-resolution data suitable for deep geological studies and support advanced seismic inversion techniques.
|
|
|
231 |
|
232 |
+
* **Geological Diversity**: The 3D models come from various sources, including well-established models such as:
|
233 |
+
* **LITHO1.0** (Pasyanos et al., 2014)
|
234 |
+
* **USTClitho1.0** (Xin et al., 2018)
|
235 |
* **Central and Western US Models** (Shen et al., 2013)
|
236 |
* **Continental China** (Shen et al., 2016)
|
237 |
+
* **US Upper-Mantle Model** (Xie et al., 2018)
|
238 |
+
* **EUcrust Model** (Lu et al., 2018)
|
239 |
+
* **Alaska Model** (Berg et al., 2020)
|
240 |
+
* **CSEM-Europe Model** (Blom et al., 2020; Fichtner et al., 2018; Çubuk-Sabuncu et al., 2017)
|
241 |
+
* **CSEM Eastern Mediterranean Model** (Blom et al., 2020; Fichtner et al., 2018)
|
242 |
+
* **CSEM Western Mediterranean Model** (Fichtner et al., 2018; Fichtner et al., 2015)
|
243 |
+
* **CSEM South Atlantic Model** (Fichtner et al., 2018; Colli et al., 2013)
|
244 |
+
* **CSEM North Atlantic Model** (Fichtner et al., 2018; Krischer et al., 2018)
|
245 |
+
* **CSEM Japanese Island Model** (Fichtner et al., 2018; Simutė et al., 2016)
|
246 |
+
* **CSEM Australasian Model** (Fichtner et al., 2018; Fichtner et al., 2010)
|
247 |
|
248 |
These models provide a comprehensive representation of both regional and global deep geological structures, enhancing the dataset’s value for training deep learning models on complex inversion tasks.
|
249 |
|