liufeng commited on
Commit
7af9850
·
1 Parent(s): 5b6026c

update: readme

Browse files
Files changed (2) hide show
  1. Datasets/README.md +1 -1
  2. README.md +16 -16
Datasets/README.md CHANGED
@@ -1,5 +1,5 @@
1
  <h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
2
- <h5 align="center">Feng Liu, Sijie Zhao, Xinyu Gu, Fenghua Lin, Yaxing Li*, Rui Su*, Jianping Huang, Lei Bai</h5>
3
 
4
  ### Source of the OpenSWI
5
 
 
1
  <h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
2
+ <h5 align="center"><a href="https://liufeng2317.github.io/">Feng Liu</a>, Sijie Zhao, Xinyu Gu, Fenghua Lin, Peiqin Zhuang, Rui Su*, Yaxing Li*, Jianping Huang, Lei Bai</h5>
3
 
4
  ### Source of the OpenSWI
5
 
README.md CHANGED
@@ -12,7 +12,7 @@ viewer: false
12
  ---
13
 
14
  <h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
15
- <h5 align="center"><a href="https://liufeng2317.github.io/">Feng Liu</a>, Sijie Zhao, Xinyu Gu, Fenghua Lin, Yaxing Li*, Rui Su*, Jianping Huang, Lei Bai</h5>
16
 
17
  ![](./Figure/Figure1.png)
18
 
@@ -210,9 +210,9 @@ These datasets are ideal for training and evaluating deep learning models focuse
210
  * The dataset spans a **period range from 0.2 to 10 seconds** and covers **100 sampling points** (including uniform, random, and logarithmic distributions) for each dispersion curve. This variety ensures robust training and evaluation across different geological scenarios.
211
  * **Geological Diversity**: The models include a broad spectrum of real-world shallow subsurface structures, such as:
212
 
213
- * **Flat Layers (FlatVel)**
214
  * **Faulted Layers (Flat-Fault)**
215
- * **Folds (Fold)**
216
  * **Folds with Faults (Fold-Fault)**
217
  * **Real Style (Field)**
218
 
@@ -228,22 +228,22 @@ These diverse models make the dataset highly applicable for both synthetic and r
228
  * **~1.26 million 1D velocity profiles**, derived from the 3D models.
229
  * The profiles span a **period range from 1 to 100 seconds**, covering **300 sampling points** (including uniform, random, and logarithmic distributions) for each dispersion curve.
230
  * These profiles offer high-resolution data suitable for deep geological studies and support advanced seismic inversion techniques.
231
- * **Geological Diversity**: The 3D models come from various sources, including well-established models such as:
232
 
233
- * **LITHO1.0** (global crust and mantle structure)
234
- * **USTClitho1.0** (high-resolution model for China)
 
235
  * **Central and Western US Models** (Shen et al., 2013)
236
  * **Continental China** (Shen et al., 2016)
237
- * **US Upper-Mantle Model**
238
- * **EUcrust Model**
239
- * **Alaska Model**
240
- * **CSEM-Europe Model**
241
- * **CSEM Eastern Mediterranean Model**
242
- * **CSEM Western Mediterranean Model**
243
- * **CSEM South Atlantic Model**
244
- * **CSEM North Atlantic Model**
245
- * **CSEM Japanese Island Model**
246
- * **CSEM Australasian Model**
247
 
248
  These models provide a comprehensive representation of both regional and global deep geological structures, enhancing the dataset’s value for training deep learning models on complex inversion tasks.
249
 
 
12
  ---
13
 
14
  <h1 align="center">OpenSWI: A Massive-Scale Benchmark Dataset for Surface Wave Dispersion Curve Inversion</h1>
15
+ <h5 align="center"><a href="https://liufeng2317.github.io/">Feng Liu</a>, Sijie Zhao, Xinyu Gu, Fenghua Lin, Peiqin Zhuang, Rui Su*, Yaxing Li*, Jianping Huang, Lei Bai</h5>
16
 
17
  ![](./Figure/Figure1.png)
18
 
 
210
  * The dataset spans a **period range from 0.2 to 10 seconds** and covers **100 sampling points** (including uniform, random, and logarithmic distributions) for each dispersion curve. This variety ensures robust training and evaluation across different geological scenarios.
211
  * **Geological Diversity**: The models include a broad spectrum of real-world shallow subsurface structures, such as:
212
 
213
+ * **Flat Layers**
214
  * **Faulted Layers (Flat-Fault)**
215
+ * **Folds**
216
  * **Folds with Faults (Fold-Fault)**
217
  * **Real Style (Field)**
218
 
 
228
  * **~1.26 million 1D velocity profiles**, derived from the 3D models.
229
  * The profiles span a **period range from 1 to 100 seconds**, covering **300 sampling points** (including uniform, random, and logarithmic distributions) for each dispersion curve.
230
  * These profiles offer high-resolution data suitable for deep geological studies and support advanced seismic inversion techniques.
 
231
 
232
+ * **Geological Diversity**: The 3D models come from various sources, including well-established models such as:
233
+ * **LITHO1.0** (Pasyanos et al., 2014)
234
+ * **USTClitho1.0** (Xin et al., 2018)
235
  * **Central and Western US Models** (Shen et al., 2013)
236
  * **Continental China** (Shen et al., 2016)
237
+ * **US Upper-Mantle Model** (Xie et al., 2018)
238
+ * **EUcrust Model** (Lu et al., 2018)
239
+ * **Alaska Model** (Berg et al., 2020)
240
+ * **CSEM-Europe Model** (Blom et al., 2020; Fichtner et al., 2018; Çubuk-Sabuncu et al., 2017)
241
+ * **CSEM Eastern Mediterranean Model** (Blom et al., 2020; Fichtner et al., 2018)
242
+ * **CSEM Western Mediterranean Model** (Fichtner et al., 2018; Fichtner et al., 2015)
243
+ * **CSEM South Atlantic Model** (Fichtner et al., 2018; Colli et al., 2013)
244
+ * **CSEM North Atlantic Model** (Fichtner et al., 2018; Krischer et al., 2018)
245
+ * **CSEM Japanese Island Model** (Fichtner et al., 2018; Simutė et al., 2016)
246
+ * **CSEM Australasian Model** (Fichtner et al., 2018; Fichtner et al., 2010)
247
 
248
  These models provide a comprehensive representation of both regional and global deep geological structures, enhancing the dataset’s value for training deep learning models on complex inversion tasks.
249