Datasets:
Tasks:
Text Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
Tags:
art
License:
import os | |
from datasets import Dataset, DatasetDict, Image, Features, Value | |
import glob | |
# Define the path to your dataset (where the folders like 0_frames, 1_frames, etc., are located) | |
dataset_path = "/Users/lorenzo/Documents/GitHub/sprite-animation/train" # Replace with the actual path | |
# Define the features for the dataset | |
features = Features({ | |
"image": Image(), | |
"label": Value("string"), # The folder name (e.g., "12_frames") | |
"sprite_id": Value("string"), # The sprite ID (e.g., "12") | |
}) | |
# Initialize lists to hold the consolidated data | |
images = [] | |
labels = [] | |
sprite_ids = [] | |
# Iterate over each folder (0_frames, 1_frames, etc.) | |
for folder_name in os.listdir(dataset_path): | |
folder_path = os.path.join(dataset_path, folder_name) | |
# Skip non-directory files and hidden directories (e.g., .git) | |
if not os.path.isdir(folder_path) or folder_name.startswith("."): | |
continue | |
print(f"Processing folder: {folder_name}") # Debug: Print folder being processed | |
# Extract the sprite ID from the folder name (e.g., "12" from "12_frames") | |
sprite_id = folder_name.split("_")[0] | |
# Load all images in the folder | |
image_paths = glob.glob(os.path.join(folder_path, "sprite_*.png")) | |
print(f"Found {len(image_paths)} images in folder '{folder_name}'") # Debug: Print number of images found | |
for image_path in image_paths: | |
# Append data to the consolidated lists | |
images.append(image_path) | |
labels.append(folder_name) # Use the folder name as the label | |
sprite_ids.append(sprite_id) # Use the sprite ID as an additional field | |
# Create a single dataset with all the data | |
dataset = Dataset.from_dict( | |
{ | |
"image": images, | |
"label": labels, | |
"sprite_id": sprite_ids, | |
}, | |
features=features | |
) | |
# Create a DatasetDict with a single split (e.g., "train") | |
final_dataset = DatasetDict({"train": dataset}) | |
# Push the dataset to Hugging Face | |
final_dataset.push_to_hub("Lod34/sprite-animation", private=False) # Set private=True if you want it private | |
print("Dataset successfully uploaded!") |