Datasets:
Dataset Viewer
Search is not available for this dataset
image
imagewidth (px) 1.92k
1.92k
|
---|
End of preview. Expand
in Data Studio
DeepSea MOT
DeepSea MOT is a benchmark dataset for multi-object tracking on deep-sea video.
Dataset Description
DeepSea MOT consists of 4 video sequences (2 midwater, 2 benthic) with a total of 2,400 frames and 57,376 annotated objects comprising 188 tracks. The videos were captured by the Monterey Bay Aquarium Research Institute (MBARI) using remotely operated vehicles (ROVs) Doc Ricketts and Ventana in deep-sea environments, showcasing a variety of marine species and underwater scenes.
- Paper: https://arxiv.org/abs/TBD
- Workflow: https://docs.mbari.org/benchmark_eval/
File Structure
The dataset is organized as follows:
data/
βββ vidseq_names.txt # TrackEval sequence names file
βββ BD/ # Benthic Difficult sequence
β βββ BD.mov # Source video file
β βββ gt.txt # MOT Challenge format ground truth
β βββ seqinfo.ini # TrackEval sequence information
β βββ images/ # Frame images (JPG format)
β β βββ BD_001.jpg
β β βββ BD_002.jpg
β β βββ ...
β βββ labels/ # YOLO-formatted annotation files (TXT)
β βββ xml/ # Pascal VOC annotation files (from RectLabel)
βββ BS/ # Benthic Simple sequence
β βββ BS.mov
β βββ gt.txt
β βββ seqinfo.ini
β βββ images/
β βββ labels/
β βββ xml/
βββ MWD/ # Midwater Difficult sequence
β βββ MWD.mov
β βββ gt.txt
β βββ seqinfo.ini
β βββ images/
β βββ labels/
β βββ xml/
βββ MWS/ # Midwater Simple sequence
βββ MWS.mov
βββ gt.txt
βββ seqinfo.ini
βββ images/
βββ labels/
βββ xml/
Each sequence directory contains:
- Source video (
.mov
): Original ROV footage - Ground truth (
gt.txt
): MOT Challenge format annotations for tracking evaluation - Sequence info (
seqinfo.ini
): Metadata file for TrackEval compatibility - Images (
images/
): Individual frame extractions in JPG format - YOLO labels (
labels/
): Object detection annotations in YOLO format (TXT files) - Pascal VOC (
xml/
): Object detection annotations in Pascal VOC format (generated via RectLabel)
Additional Information
Dataset Curators
Authors of [1]:
- Kevin Barnard
- Elaine Liu
- Kristine Walz
- Brian Schlining
- Nancy Jacobsen Stout
- Lonny Lundsten
Citation Information
@article{barnard2025deepseamot,
author = {Barnard, Kevin and Liu, Elaine and Walz, Kristine and Schlining, Brian and Stout, Nancy Jacobsen and Lundsten, Lonny},
title = { {DeepSea MOT}: A benchmark dataset for multi-object tracking on deep-sea video},
year = {2025},
journal = {arXiv preprint arXiv:2501.XXXXX},
doi = {10.48550/arXiv.2501.XXXXX},
}
- Downloads last month
- 167