Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
1
7
corpus-id
stringlengths
1
7
score
stringclasses
1 value
1185869
0
1
1185868
16
1
597651
49
1
403613
60
1
1183785
389
1
312651
616
1
80385
723
1
645590
944
1
645337
1054
1
186154
1160
1
457407
1172
1
441383
1389
1
683408
1605
1
1164799
1713
1
484187
1822
1
460668
1939
1
666321
2152
1
182487
2277
1
564233
2488
1
455279
2599
1
208108
2704
1
733739
2816
1
1164798
2924
1
402608
3036
1
443797
3146
1
662502
3257
1
1184679
3368
1
14562
3382
1
602162
3597
1
545059
3702
1
708236
3815
1
310130
3923
1
693161
4029
1
186617
4251
1
573027
4360
1
1173772
4462
1
541973
4583
1
273090
4698
1
441269
4809
1
642237
4918
1
503515
5025
1
637443
5250
1
1164796
5359
1
749988
5469
1
749988
5470
1
135841
5585
1
295446
6021
1
653051
6127
1
691147
6236
1
410621
6458
1
410621
6461
1
1164795
6564
1
598443
6673
1
596451
6685
1
651441
6793
1
452286
7012
1
308543
7115
1
202126
7223
1
114820
7334
1
501778
7445
1
531029
7553
1
651110
7662
1
594127
7766
1
1164794
7777
1
396032
7885
1
705580
8103
1
658203
8217
1
387734
8328
1
655102
8439
1
224712
8652
1
411732
8764
1
1164793
8991
1
605902
9323
1
581014
9432
1
559240
9533
1
608711
9755
1
535936
9972
1
130335
9990
1
147535
10087
1
1164792
10204
1
595576
10417
1
569308
10747
1
753706
10854
1
627871
10964
1
673608
11081
1
510071
11102
1
113839
11321
1
1164791
11431
1
460953
11640
1
685235
12191
1
650643
12528
1
1183784
12640
1
1164790
12753
1
96740
12858
1
26666
12967
1
490046
13184
1
485823
13300
1
635632
13310
1
534505
13630
1
498612
13852
1
End of preview. Expand in Data Studio

Dataset Summary

MSMARCO-Fa is a Persian (Farsi) dataset created for the Retrieval task, particularly focusing on web search and document ranking. It is a translated version of the original English MS MARCO (Microsoft MAchine Reading COmprehension) dataset and is a key part of the FaMTEB (Farsi Massive Text Embedding Benchmark), under the BEIR-Fa collection.

  • Language(s): Persian (Farsi)
  • Task(s): Retrieval (Web Search, Document Ranking)
  • Source: Translated from the English MS MARCO dataset
  • Part of FaMTEB: Yes — under BEIR-Fa

Supported Tasks and Leaderboards

This dataset is used to evaluate the effectiveness of text embedding models in ranking web documents based on relevance to user queries, simulating real-world search engine applications. Benchmarking is available via the Persian MTEB Leaderboard (language: Persian).

Construction

The dataset was built by:

  • Translating the original English MS MARCO dataset to Persian using the Google Translate API
  • Preserving original relevance annotations, where some passages are human-judged as relevant to each query

As described in the FaMTEB paper:

  • Translation quality was evaluated by BM25 retrieval score comparison with the English dataset
  • Further validation was done using LLM-based assessments (GEMBA-DA framework)
  • This dataset is similar in structure to mMARCO, but focused solely on the Persian language

Data Splits

Based on FaMTEB paper (Table 5):

  • Train: 9,374,574 samples
  • Dev: 0 samples
  • Test: 8,845,925 samples

Total: ~9.9 million examples

Downloads last month
74