Dataset Viewer
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
LOL-EVE eQTL Causal Identification Dataset
Dataset Description
This dataset contains causal eQTL (expression quantitative trait loci) identification data for evaluating variant effect prediction models. The dataset includes indel variants in promoter regions with associated gene expression data and functional annotations.
Dataset Structure
- Total Variants: 7,090
- Species: Primates (Homo sapiens)
- Variant Types: Insertions and deletions in promoter regions
- Sequence Length: Up to 1,000bp promoter regions
Features
Basic Variant Information
gene
: Gene symbolspecies
: Species nameclade
: Evolutionary cladechromosome
: Chromosomeposition
: Genomic positionref
: Reference allelealt
: Alternative allelevariant_type
: Type of variant (insertion/deletion/substitution)
Sequences
wt_sequence
: Wild-type sequencevar_sequence
: Variant sequencesequence_length
: Length of sequencewt_sequence_start
: Start position of sequence
Labels and Annotations
pip
: Posterior inclusion probability (causal label)indel_length
: Length of indeldistance_tss
: Distance to transcription start sitegsa_depth
: GSA depthdepth_category
: Depth category
Functional Annotations
phylop
: PhyloP conservation scorecadd
: CADD scoregc_percentage_delta
: GC content change
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("Marks-lab/LOL-EVE-eQTL")
# Access the data
print(f"Dataset size: {len(dataset['train'])}")
print(f"Features: {dataset['train'].features}")
# Example: Get causal variants (PIP >= 0.01)
causal_variants = dataset['train'].filter(lambda x: x['pip'] >= 0.01)
print(f"Causal variants: {len(causal_variants)}")
Citation
If you use this dataset in your research, please cite:
@article{loleve2025,
title={A Genomic Language Model for Zero-Shot Prediction of Promoter
Variant Effects},
author={Courtney A. Shearer, Rose Orenbuch, Felix Teufel,Christian J. Steinmetz, Daniel Ritter,
Erik Xie, Artem Gazizov, Aviv Spinner, Jonathan Frazer, Mafalda Dias,
Pascal Notin, Debora S. Marks},
journal={Proceedings of the 19th Machine Learning in Computational Biology meeting},
year={2025}
}
License
This dataset is released under the MIT License.
- Downloads last month
- 35