Meehai commited on
Commit
701721b
·
1 Parent(s): e489e2c

this should be in a different repo

Browse files
scripts/collage_comparison/vre.sh CHANGED
@@ -2,4 +2,4 @@
2
  set -ex
3
  video_file=$1
4
  shift
5
- vre_gpu_parallel $video_file --gpus $@ -- --config_path /scratch/sdc/datasets/dronescapes-2024/scripts/collage_comparison/cfg.yaml -o data_${video_file} --representations semantic_mask2former_coco_47429163_0 semantic_mask2former_mapillary_49189528_0 semantic_mask2former_mapillary_49189528_1 depth_marigold "normals_svd(depth_marigold)" semantic_mask2former_swin_mapillary_converted semantic_mask2former_r50_mapillary_converted semantic_mask2former_swin_coco_converted semantic_median_expert buildings "buildings(nearby)" containing rgb safe-landing-no-sseg safe-landing-semantics sky-and-water transportation vegetation -I /export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers/readers/semantic_mapper.py:get_new_semantic_mapped_tasks --output_dir_exists_mode skip_computed
 
2
  set -ex
3
  video_file=$1
4
  shift
5
+ vre_gpu_parallel $video_file --config_path /scratch/sdc/datasets/dronescapes-2024/scripts/collage_comparison/cfg.yaml -o data_${video_file} --representations semantic_mask2former_coco_47429163_0 semantic_mask2former_mapillary_49189528_0 semantic_mask2former_mapillary_49189528_1 depth_marigold "normals_svd(depth_marigold)" semantic_mask2former_swin_mapillary_converted semantic_mask2former_r50_mapillary_converted semantic_mask2former_swin_coco_converted semantic_median_expert buildings "buildings(nearby)" containing rgb safe-landing-no-sseg safe-landing-semantics sky-and-water transportation vegetation -I /export/home/proiecte/aux/mihai_cristian.pirvu/code/neo-transformers/readers/semantic_mapper.py:get_new_semantic_mapped_tasks --output_dir_exists_mode skip_computed
scripts/collage_comparison/wip.py CHANGED
@@ -76,14 +76,13 @@ def load_model_from_path(weights_path):
76
  logger.info(f"Excluded (fully masked) tasks: {cfg.train.algorithm.masking.parameters.excluded_tasks}")
77
  return model
78
 
79
-
80
  def colorize_dronescapes(item: np.ndarray) -> np.ndarray:
81
  # colorize_semantic_segmentation
82
- assert len(item.shape) == 3 and item.shape[-1] == 8, item.shape
83
  color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
84
  [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
85
  classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]
86
- return colorize_semantic_segmentation(item[None].argmax(-1), color_map=color_map, classes=classes_8)[0]
87
 
88
  @tr.no_grad
89
  def inference(model: LME | str, batch: dict, n_ens: int | None = None) -> np.ndarray:
@@ -111,7 +110,7 @@ def inference(model: LME | str, batch: dict, n_ens: int | None = None) -> np.nda
111
  else:
112
  acc_sema = (acc_sema * i + curr_sema) / (i + 1)
113
  item = acc_sema[0]
114
- return colorize_dronescapes(item.permute(1, 2, 0).numpy())
115
 
116
  def get_args() -> Namespace:
117
  parser = ArgumentParser()
@@ -179,16 +178,30 @@ def main(args: Namespace):
179
  fix_plot_fns_(plot_fns, task_types, stats, cfg["data"]["parameters"]["normalization"])
180
 
181
  (out_dir := Path.cwd() / f"out_{video_path.name}").mkdir(exist_ok=True)
 
 
182
  for frame_ix in tqdm(frames):
183
- if (out_file := out_dir/ f"{frame_ix}.jpg").exists():
184
  continue
185
  batch_m2f = reader2.collate_fn([reader2[frame_ix]])
186
  batch = reader.collate_fn([reader[frame_ix]])
187
- m2f_img = inference("semantic_mask2former_r50_mapillary_converted", batch_m2f)
188
- ens_img = inference(model_mae, batch, n_ens=30)
189
- distil_img = inference(model_distil, batch)
190
  rgb = batch_m2f["data"]["rgb"][0].permute(1, 2, 0).numpy()
191
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192
  titles = ["RGB", "Mask2Former (216M)", "Ensembles-30 (4M)", "Distillation (4M)"]
193
  collage = collage_fn([rgb, m2f_img, ens_img, distil_img], titles=titles, rows_cols=(2, 2), size_px=40)
194
  image_write(collage, out_file)
 
76
  logger.info(f"Excluded (fully masked) tasks: {cfg.train.algorithm.masking.parameters.excluded_tasks}")
77
  return model
78
 
 
79
  def colorize_dronescapes(item: np.ndarray) -> np.ndarray:
80
  # colorize_semantic_segmentation
81
+ assert len(item.shape) == 2, item.shape
82
  color_map = [[0, 255, 0], [0, 127, 0], [255, 255, 0], [255, 255, 255],
83
  [255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
84
  classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]
85
+ return colorize_semantic_segmentation(item[None], color_map=color_map, classes=classes_8)[0]
86
 
87
  @tr.no_grad
88
  def inference(model: LME | str, batch: dict, n_ens: int | None = None) -> np.ndarray:
 
110
  else:
111
  acc_sema = (acc_sema * i + curr_sema) / (i + 1)
112
  item = acc_sema[0]
113
+ return item.permute(1, 2, 0).numpy().argmax(-1).astype(np.uint8)
114
 
115
  def get_args() -> Namespace:
116
  parser = ArgumentParser()
 
178
  fix_plot_fns_(plot_fns, task_types, stats, cfg["data"]["parameters"]["normalization"])
179
 
180
  (out_dir := Path.cwd() / f"out_{video_path.name}").mkdir(exist_ok=True)
181
+ [(out_dir / x).mkdir(exist_ok=True) for x in ["ens", "m2f", "distil", "collage"]]
182
+
183
  for frame_ix in tqdm(frames):
184
+ if (out_file := out_dir / f"collage/{frame_ix}.jpg").exists():
185
  continue
186
  batch_m2f = reader2.collate_fn([reader2[frame_ix]])
187
  batch = reader.collate_fn([reader[frame_ix]])
 
 
 
188
  rgb = batch_m2f["data"]["rgb"][0].permute(1, 2, 0).numpy()
189
 
190
+ if not (pth := out_dir / f"m2f/{frame_ix}.npz").exists():
191
+ y = inference("semantic_mask2former_r50_mapillary_converted", batch_m2f)
192
+ np.savez_compressed(pth, y)
193
+ m2f_img = colorize_dronescapes(np.load(pth)["arr_0"])
194
+
195
+ if not (pth := out_dir / f"ens/{frame_ix}.npz").exists():
196
+ y = inference(model_mae, batch, n_ens=30)
197
+ np.savez_compressed(pth, y)
198
+ ens_img = colorize_dronescapes(np.load(pth)["arr_0"])
199
+
200
+ if not (pth := out_dir / f"distil/{frame_ix}.npz").exists():
201
+ y = inference(model_distil, batch)
202
+ np.savez_compressed(pth, y)
203
+ distil_img = colorize_dronescapes(np.load(pth)["arr_0"])
204
+
205
  titles = ["RGB", "Mask2Former (216M)", "Ensembles-30 (4M)", "Distillation (4M)"]
206
  collage = collage_fn([rgb, m2f_img, ens_img, distil_img], titles=titles, rows_cols=(2, 2), size_px=40)
207
  image_write(collage, out_file)