one more
Browse files
scripts/dronescapes_viewer/dronescapes_viewer.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
scripts/dronescapes_viewer/dronescapes_viewer.py
CHANGED
@@ -15,6 +15,7 @@ import torch as tr
|
|
15 |
from media_processing_lib.collage_maker import collage_fn
|
16 |
from media_processing_lib.image import image_add_title, image_write
|
17 |
import matplotlib.pyplot as plt
|
|
|
18 |
|
19 |
from dronescapes_representations import get_dronescapes_task_types
|
20 |
|
@@ -23,7 +24,12 @@ def plot_one(data: dict[str, tr.Tensor], title: str, name_to_task: dict[str, Rep
|
|
23 |
def vre_plot_fn(rgb: tr.Tensor, x: tr.Tensor, node: Representation) -> np.ndarray:
|
24 |
node.data = ReprOut(rgb.cpu().detach().numpy()[None], MemoryData(x.cpu().detach().numpy()[None]), [0])
|
25 |
return node.make_images()[0]
|
26 |
-
img_data = {
|
|
|
|
|
|
|
|
|
|
|
27 |
img_data = reorder_dict(img_data, order) if order is not None else img_data
|
28 |
titles = [title if len(title) < 40 else f"{title[0:19]}..{title[-19:]}" for title in img_data]
|
29 |
collage = collage_fn(list(img_data.values()), titles=titles, size_px=40)
|
@@ -33,7 +39,8 @@ def plot_one(data: dict[str, tr.Tensor], title: str, name_to_task: dict[str, Rep
|
|
33 |
data_path = "../../data/test_set"
|
34 |
stats_path = "../../data/train_set/.task_statistics.npz"
|
35 |
dronescapes_task_types = get_dronescapes_task_types(include_semantics_original=False, include_gt=True, include_ci=False)
|
36 |
-
|
|
|
37 |
task_types=dronescapes_task_types, handle_missing_data="fill_nan",
|
38 |
normalization="min_max", cache_task_stats=True, batch_size_stats=300,
|
39 |
statistics=np.load(stats_path, allow_pickle=True)["arr_0"].item())
|
@@ -50,4 +57,5 @@ collage = plot_one(data, title=name, name_to_task=reader.name_to_task)
|
|
50 |
print(lo(collage))
|
51 |
# plt.figure(figsize=(20, 10))
|
52 |
# plt.imshow(collage)
|
53 |
-
image_write(collage, f"collage_{name[0:-4]}.png")
|
|
|
|
15 |
from media_processing_lib.collage_maker import collage_fn
|
16 |
from media_processing_lib.image import image_add_title, image_write
|
17 |
import matplotlib.pyplot as plt
|
18 |
+
from datetime import datetime
|
19 |
|
20 |
from dronescapes_representations import get_dronescapes_task_types
|
21 |
|
|
|
24 |
def vre_plot_fn(rgb: tr.Tensor, x: tr.Tensor, node: Representation) -> np.ndarray:
|
25 |
node.data = ReprOut(rgb.cpu().detach().numpy()[None], MemoryData(x.cpu().detach().numpy()[None]), [0])
|
26 |
return node.make_images()[0]
|
27 |
+
img_data = {}
|
28 |
+
keys = np.random.permutation(list(data.keys()))
|
29 |
+
for k in keys:
|
30 |
+
start = datetime.now()
|
31 |
+
img_data[k] = vre_plot_fn(data["rgb"], data[k], name_to_task[k])
|
32 |
+
print(k, (datetime.now() - start).total_seconds())
|
33 |
img_data = reorder_dict(img_data, order) if order is not None else img_data
|
34 |
titles = [title if len(title) < 40 else f"{title[0:19]}..{title[-19:]}" for title in img_data]
|
35 |
collage = collage_fn(list(img_data.values()), titles=titles, size_px=40)
|
|
|
39 |
data_path = "../../data/test_set"
|
40 |
stats_path = "../../data/train_set/.task_statistics.npz"
|
41 |
dronescapes_task_types = get_dronescapes_task_types(include_semantics_original=False, include_gt=True, include_ci=False)
|
42 |
+
task_names = ["rgb", "semantic_mask2former_r50_mapillary_converted", "semantic_mask2former_swin_coco_converted"]
|
43 |
+
reader = MultiTaskDataset(data_path, task_names=task_names,
|
44 |
task_types=dronescapes_task_types, handle_missing_data="fill_nan",
|
45 |
normalization="min_max", cache_task_stats=True, batch_size_stats=300,
|
46 |
statistics=np.load(stats_path, allow_pickle=True)["arr_0"].item())
|
|
|
57 |
print(lo(collage))
|
58 |
# plt.figure(figsize=(20, 10))
|
59 |
# plt.imshow(collage)
|
60 |
+
image_write(collage, out_path := f"collage_{name[0:-4]}.png")
|
61 |
+
print(f"Stored at '{out_path}'")
|