File size: 3,249 Bytes
a953ffb
 
 
020bc00
a953ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d5982d
1f869da
9d5982d
 
 
1f869da
 
 
 
9d5982d
1f869da
 
9d5982d
1f869da
9d5982d
1f869da
d5a70a6
 
 
 
 
 
 
 
2afffad
1f869da
 
 
 
 
020bc00
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: mit
---

# Populist Argument Schemes ๐Ÿ—ฃ๏ธ

A curated dataset of translated tweets from four political leaders, annotated with argument schemes according to argumentation theory. The dataset enables fine-tuning and evaluation of language models for argument mining, rhetorical analysis, and populist discourse detection.

## Dataset Summary

This dataset contains **English-translated tweets** from:
- **Matteo Salvini** ๐Ÿ‡ฎ๐Ÿ‡น
- **Jair Bolsonaro** ๐Ÿ‡ง๐Ÿ‡ท
- **Donald Trump** ๐Ÿ‡บ๐Ÿ‡ธ
- **Joe Biden** ๐Ÿ‡บ๐Ÿ‡ธ

Each tweet is annotated with its **primary argumentation scheme** (based on *Argument 1*) following a scheme taxonomy inspired by Walton and Macagno. The dataset is derived from Fabrizio Macagno's original annotated corpus on the *Language of Populism* and translated for cross-lingual NLP applications.

## Features

- `Politician`: Name of the political figure (e.g., "Trump")
- `Argument`: The tweet text (translated into English)
- `Argument Scheme`: The full name of the primary argumentation scheme (e.g., "Argument from Consequences")

## Argument Scheme Labels

The dataset includes 13 argument schemes:

| Code  | Argument Scheme                        |
|-------|----------------------------------------|
| AA    | Argument from Analogy                  |
| AC    | Argument from Consequences             |
| AH    | Ad Hominem                             |
| AS    | Argument from Sign                     |
| AV    | Argument from Values                   |
| BEX   | Argument from Best Explanation         |
| CE    | Argument from Cause to Effect          |
| CLASS | Argument from Classification           |
| CO    | Argument from Commitment               |
| PK    | Argument from Position to Know         |
| PO    | Argument from Popular Opinion          |
| PR    | Argument from Practical Reasoning      |
| VV    | Victimization                          |

## Use Cases

This dataset can be used for:
- Fine-tuning LLMs for **argument scheme classification**
- Training models for **argument mining** and **fallacy detection**
- Studying **populist rhetoric** and comparative discourse analysis
- Building educational tools for **teaching argumentation theory**

## How to Use ๐Ÿง 

You can easily load this dataset using the ๐Ÿค— `datasets` library, which allows seamless integration with Hugging Face Transformers, evaluation tools, and fine-tuning pipelines.

### ๐Ÿ“ฅ Load the Dataset

```python
from datasets import load_dataset

# Load the dataset from the Hugging Face Hub
dataset = load_dataset("MidhunKanadan/populist-argument-schemes")

# View a sample entry
print(dataset["train"][0])
```

### ๐Ÿ–จ๏ธ Expected Output

```python
{
    'Politician': 'Biden',
    'Argument': 'It matters whether you continue to wear a mask. It matters whether you continue to socially distance. It matters whether you wash your hands. It all matters and can help save lives.',
    'Argument Scheme': 'ARGUMENT FROM CONSEQUENCES'
}
```

## Citation

If you use this dataset, please cite the original author:

> Macagno, F. (2022). Argumentation schemes, fallacies, and evidence in politicians' argumentative tweets โ€“ a coded dataset. *Data in Brief*, 44, 108501. https://doi.org/10.1016/j.dib.2022.108501