File size: 3,249 Bytes
a953ffb 020bc00 a953ffb 9d5982d 1f869da 9d5982d 1f869da 9d5982d 1f869da 9d5982d 1f869da 9d5982d 1f869da d5a70a6 2afffad 1f869da 020bc00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: mit
---
# Populist Argument Schemes ๐ฃ๏ธ
A curated dataset of translated tweets from four political leaders, annotated with argument schemes according to argumentation theory. The dataset enables fine-tuning and evaluation of language models for argument mining, rhetorical analysis, and populist discourse detection.
## Dataset Summary
This dataset contains **English-translated tweets** from:
- **Matteo Salvini** ๐ฎ๐น
- **Jair Bolsonaro** ๐ง๐ท
- **Donald Trump** ๐บ๐ธ
- **Joe Biden** ๐บ๐ธ
Each tweet is annotated with its **primary argumentation scheme** (based on *Argument 1*) following a scheme taxonomy inspired by Walton and Macagno. The dataset is derived from Fabrizio Macagno's original annotated corpus on the *Language of Populism* and translated for cross-lingual NLP applications.
## Features
- `Politician`: Name of the political figure (e.g., "Trump")
- `Argument`: The tweet text (translated into English)
- `Argument Scheme`: The full name of the primary argumentation scheme (e.g., "Argument from Consequences")
## Argument Scheme Labels
The dataset includes 13 argument schemes:
| Code | Argument Scheme |
|-------|----------------------------------------|
| AA | Argument from Analogy |
| AC | Argument from Consequences |
| AH | Ad Hominem |
| AS | Argument from Sign |
| AV | Argument from Values |
| BEX | Argument from Best Explanation |
| CE | Argument from Cause to Effect |
| CLASS | Argument from Classification |
| CO | Argument from Commitment |
| PK | Argument from Position to Know |
| PO | Argument from Popular Opinion |
| PR | Argument from Practical Reasoning |
| VV | Victimization |
## Use Cases
This dataset can be used for:
- Fine-tuning LLMs for **argument scheme classification**
- Training models for **argument mining** and **fallacy detection**
- Studying **populist rhetoric** and comparative discourse analysis
- Building educational tools for **teaching argumentation theory**
## How to Use ๐ง
You can easily load this dataset using the ๐ค `datasets` library, which allows seamless integration with Hugging Face Transformers, evaluation tools, and fine-tuning pipelines.
### ๐ฅ Load the Dataset
```python
from datasets import load_dataset
# Load the dataset from the Hugging Face Hub
dataset = load_dataset("MidhunKanadan/populist-argument-schemes")
# View a sample entry
print(dataset["train"][0])
```
### ๐จ๏ธ Expected Output
```python
{
'Politician': 'Biden',
'Argument': 'It matters whether you continue to wear a mask. It matters whether you continue to socially distance. It matters whether you wash your hands. It all matters and can help save lives.',
'Argument Scheme': 'ARGUMENT FROM CONSEQUENCES'
}
```
## Citation
If you use this dataset, please cite the original author:
> Macagno, F. (2022). Argumentation schemes, fallacies, and evidence in politicians' argumentative tweets โ a coded dataset. *Data in Brief*, 44, 108501. https://doi.org/10.1016/j.dib.2022.108501 |