Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
100
100
label
class label
2 classes
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
0dusty
End of preview. Expand in Data Studio

mb-atmospheric_dust_cls_edr

A Mars image classification dataset for planetary science research.

Dataset Metadata

  • License: CC-BY-4.0 (Creative Commons Attribution 4.0 International)
  • Version: 1.0
  • Date Published: 2025-05-15
  • Cite As: TBD

Classes

This dataset contains the following classes:

  • 0: dusty
  • 1: not_dusty

Statistics

  • train: 9817 images
  • test: 5214 images
  • val: 4969 images
  • few_shot_train_2_shot: 4 images
  • few_shot_train_1_shot: 2 images
  • few_shot_train_10_shot: 20 images
  • few_shot_train_5_shot: 10 images
  • few_shot_train_15_shot: 30 images
  • few_shot_train_20_shot: 40 images
  • partition_train_0.01x_partition: 98 images
  • partition_train_0.02x_partition: 196 images
  • partition_train_0.50x_partition: 4908 images
  • partition_train_0.20x_partition: 1963 images
  • partition_train_0.05x_partition: 490 images
  • partition_train_0.10x_partition: 981 images
  • partition_train_0.25x_partition: 2454 images

Few-shot Splits

This dataset includes the following few-shot training splits:

  • few_shot_train_2_shot: 4 images
  • few_shot_train_1_shot: 2 images
  • few_shot_train_10_shot: 20 images
  • few_shot_train_5_shot: 10 images
  • few_shot_train_15_shot: 30 images
  • few_shot_train_20_shot: 40 images

Few-shot configurations:

  • 2_shot.csv
  • 1_shot.csv
  • 10_shot.csv
  • 5_shot.csv
  • 15_shot.csv
  • 20_shot.csv

Partition Splits

This dataset includes the following training data partitions:

  • partition_train_0.01x_partition: 98 images
  • partition_train_0.02x_partition: 196 images
  • partition_train_0.50x_partition: 4908 images
  • partition_train_0.20x_partition: 1963 images
  • partition_train_0.05x_partition: 490 images
  • partition_train_0.10x_partition: 981 images
  • partition_train_0.25x_partition: 2454 images

Usage

from datasets import load_dataset

dataset = load_dataset("Mirali33/mb-atmospheric_dust_cls_edr")

Format

Each example in the dataset has the following format:

{
  'image': Image(...),  # PIL image
  'label': int,         # Class label
}
Downloads last month
65

Collection including Mirali33/mb-atmospheric_dust_cls_edr