ParsVoice / README.md
MohammadJRanjbar's picture
Upload dataset
b0ab68c verified
metadata
language:
  - fa
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
task_categories:
  - automatic-speech-recognition
task_ids:
  - speech-recognition
pretty_name: ParsVoice - Persian Speech Recognition Dataset
tags:
  - persian
  - farsi
  - speech
  - audio
  - asr
license: mit
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
dataset_info:
  features:
    - name: audio
      dtype:
        audio:
          sampling_rate: 16000
    - name: transcription
      dtype: string
    - name: transcription_with_punctuation
      dtype: string
    - name: speaker_id
      dtype: string
    - name: book_id
      dtype: string
    - name: is_complete
      dtype: bool
    - name: duration_seconds
      dtype: float64
    - name: snr_db
      dtype: float64
    - name: quality_score
      dtype: float64
    - name: segment_type
      dtype: string
    - name: was_smart_trimmed
      dtype: bool
    - name: speaker_embedding
      list: float64
    - name: embedding_confidence
      dtype: float64
  splits:
    - name: train
      num_bytes: 323754892
      num_examples: 916
  download_size: 318080676
  dataset_size: 323754892

ParsVoice - Persian Speech Recognition Dataset

Dataset Description

ParsVoice is a high-quality Persian (Farsi) speech recognition dataset created from audiobooks. The dataset features clean, professionally narrated speech with accurate transcriptions.

Dataset Statistics

  • Total Samples: 2,624
  • Total Books: 10
  • Total Narrators: 5
  • Language: Persian (Farsi)
  • Sampling Rate: 16 kHz
  • Audio Format: WAV

Features

  • audio: High-quality 16kHz audio segments
  • transcription: Raw transcription text
  • transcription_with_punctuation: Transcription with restored punctuation
  • speaker_id: Encoded speaker/narrator identifier
  • book_id: Encoded book identifier
  • is_complete: Whether the segment contains a complete sentence
  • duration_seconds: Length of audio segment
  • snr_db: Signal-to-noise ratio
  • quality_score: Overall quality score (0-100)
  • segment_type: Type of segment processing applied
  • was_smart_trimmed: Whether smart trimming was applied

Quality Assurance

  • All segments pass quality filters for SNR, background music detection, and distortion
  • Smart trimming applied to remove excess silence while preserving speech content
  • Only high-quality segments with clear transcriptions included

Privacy

  • Book titles and narrator names are encoded for privacy
  • Original content identification is not possible from the dataset

Usage

from datasets import load_dataset

dataset = load_dataset("MohammadJRanjbar/ParsVoice")

# Access audio and transcription
for sample in dataset['train']:
    audio = sample['audio']
    text = sample['transcription']
    # Use for training ASR models

License

MIT License - See LICENSE file for details.

Citation

If you use this dataset, please cite:

@dataset{parsvoice2025,
  title={ParsVoice: A High-Quality Persian Speech Recognition Dataset},
  author={Mohammad Ranjbar},
  year={2025},
  url={https://huggingface.co/datasets/MohammadJRanjbar/ParsVoice}
}