Datasets:
metadata
language:
- fa
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
task_categories:
- automatic-speech-recognition
task_ids:
- speech-recognition
pretty_name: ParsVoice - Persian Speech Recognition Dataset
tags:
- persian
- farsi
- speech
- audio
- asr
license: mit
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: transcription
dtype: string
- name: transcription_with_punctuation
dtype: string
- name: speaker_id
dtype: string
- name: book_id
dtype: string
- name: is_complete
dtype: bool
- name: duration_seconds
dtype: float64
- name: snr_db
dtype: float64
- name: quality_score
dtype: float64
- name: segment_type
dtype: string
- name: was_smart_trimmed
dtype: bool
- name: speaker_embedding
list: float64
- name: embedding_confidence
dtype: float64
splits:
- name: train
num_bytes: 323754892
num_examples: 916
download_size: 318080676
dataset_size: 323754892
ParsVoice - Persian Speech Recognition Dataset
Dataset Description
ParsVoice is a high-quality Persian (Farsi) speech recognition dataset created from audiobooks. The dataset features clean, professionally narrated speech with accurate transcriptions.
Dataset Statistics
- Total Samples: 2,624
- Total Books: 10
- Total Narrators: 5
- Language: Persian (Farsi)
- Sampling Rate: 16 kHz
- Audio Format: WAV
Features
- audio: High-quality 16kHz audio segments
- transcription: Raw transcription text
- transcription_with_punctuation: Transcription with restored punctuation
- speaker_id: Encoded speaker/narrator identifier
- book_id: Encoded book identifier
- is_complete: Whether the segment contains a complete sentence
- duration_seconds: Length of audio segment
- snr_db: Signal-to-noise ratio
- quality_score: Overall quality score (0-100)
- segment_type: Type of segment processing applied
- was_smart_trimmed: Whether smart trimming was applied
Quality Assurance
- All segments pass quality filters for SNR, background music detection, and distortion
- Smart trimming applied to remove excess silence while preserving speech content
- Only high-quality segments with clear transcriptions included
Privacy
- Book titles and narrator names are encoded for privacy
- Original content identification is not possible from the dataset
Usage
from datasets import load_dataset
dataset = load_dataset("MohammadJRanjbar/ParsVoice")
# Access audio and transcription
for sample in dataset['train']:
audio = sample['audio']
text = sample['transcription']
# Use for training ASR models
License
MIT License - See LICENSE file for details.
Citation
If you use this dataset, please cite:
@dataset{parsvoice2025,
title={ParsVoice: A High-Quality Persian Speech Recognition Dataset},
author={Mohammad Ranjbar},
year={2025},
url={https://huggingface.co/datasets/MohammadJRanjbar/ParsVoice}
}