Datasets:
The dataset viewer is not available for this split.
Error code: FeaturesError Exception: ArrowInvalid Message: Schema at index 1 was different: name: string content_type: string subcategories: list<item: struct<name: string, content_type: string, books: struct<טור אורח חיים: struct<pages: int64>, טור יורה דעה: struct<pages: int64, exclude: list<item: int64>>, טור אבן העזר: struct<pages: int64>, טור חושן משפט: struct<pages: int64>, שולחן ערוך אורח חיים: struct<pages: int64>, שולחן ערוך יורה דעה: struct<pages: int64>, שולחן ערוך אבן העזר: struct<pages: int64>, שולחן ערוך חושן משפט: struct<pages: int64>, משנה ברורה: struct<parts: list<item: struct<name: string, start: int64, end: int64>>>, ביאור הלכה: struct<parts: list<item: struct<name: string, start: int64, end: int64, exclude: list<item: int64>>>>>>> vs name: string content_type: string subcategories: list<item: struct<name: string, content_type: string, books: struct<ברכות: struct<pages: int64>, פאה: struct<pages: int64>, דמאי: struct<pages: int64>, כלאים: struct<pages: int64>, שביעית: struct<pages: int64>, תרומות: struct<pages: int64>, מעשרות: struct<pages: int64>, מעשר שני: struct<pages: int64>, חלה: struct<pages: int64>, ערלה: struct<pages: int64>, ביכורים: struct<pages: int64>, שבת: struct<pages: int64>, עירובין: struct<pages: int64>, פסחים: struct<pages: int64>, שקלים: struct<pages: int64>, יומא: struct<pages: int64>, סוכה: struct<pages: int64>, ביצה: struct<pages: int64>, ראש השנה: struct<pages: int64>, תענית: struct<pages: int64>, מגילה: struct<pages: int64>, מועד קטן: struct<pages: int64>, חגיגה: struct<pages: int64>, יבמות: struct<pages: int64>, כתובות: struct<pages: int64>, נדרים: struct<pages: int64>, נזיר: struct<pages: int64>, סוטה: struct<pages: int64>, גיטין: struct<pages: int64>, קידושין: struct<pages: int64>, בבא קמא: struct<pages: int64>, בבא מציעא: struct<pages: int64>, בבא בתרא: struct<pages: int64>, סנהדרין: struct<pages: int64>, מכות: struct<pages: int64>, שבועות: struct<pages: int64>, עדיות: struct<pages: int64>, עבודה זרה: struct<pages: int64>, אבות: struct<pages: int64>, הוריות: struct<pages: int64>, זבחים: struct<pages: int64>, מנחות: struct<pages: int64>, חולין: struct<pages: int64>, בכורות: struct<pages: int64>, ערכין: struct<pages: int64>, תמורה: struct<pages: int64>, כריתות: struct<pages: int64>, מעילה: struct<pages: int64>, תמיד: struct<pages: int64>, מדות: struct<pages: int64>, קינים: struct<pages: int64>, כלים: struct<pages: int64>, אהלות: struct<pages: int64>, נגעים: struct<pages: int64>, פרה: struct<pages: int64>, טהרות: struct<pages: int64>, מקואות: struct<pages: int64>, נדה: struct<pages: int64>, מכשירין: struct<pages: int64>, זבים: struct<pages: int64>, טבול יום: struct<pages: int64>, ידים: struct<pages: int64>, עוקצים: struct<pages: int64>>>> Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response iterable_dataset = iterable_dataset._resolve_features() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3357, in _resolve_features features = _infer_features_from_batch(self.with_format(None)._head()) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2111, in _head return next(iter(self.iter(batch_size=n))) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2315, in iter for key, example in iterator: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__ for key, pa_table in self._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1878, in _iter_arrow yield from self.ex_iterable._iter_arrow() File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 504, in _iter_arrow yield new_key, pa.Table.from_batches(chunks_buffer) File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Schema at index 1 was different: name: string content_type: string subcategories: list<item: struct<name: string, content_type: string, books: struct<טור אורח חיים: struct<pages: int64>, טור יורה דעה: struct<pages: int64, exclude: list<item: int64>>, טור אבן העזר: struct<pages: int64>, טור חושן משפט: struct<pages: int64>, שולחן ערוך אורח חיים: struct<pages: int64>, שולחן ערוך יורה דעה: struct<pages: int64>, שולחן ערוך אבן העזר: struct<pages: int64>, שולחן ערוך חושן משפט: struct<pages: int64>, משנה ברורה: struct<parts: list<item: struct<name: string, start: int64, end: int64>>>, ביאור הלכה: struct<parts: list<item: struct<name: string, start: int64, end: int64, exclude: list<item: int64>>>>>>> vs name: string content_type: string subcategories: list<item: struct<name: string, content_type: string, books: struct<ברכות: struct<pages: int64>, פאה: struct<pages: int64>, דמאי: struct<pages: int64>, כלאים: struct<pages: int64>, שביעית: struct<pages: int64>, תרומות: struct<pages: int64>, מעשרות: struct<pages: int64>, מעשר שני: struct<pages: int64>, חלה: struct<pages: int64>, ערלה: struct<pages: int64>, ביכורים: struct<pages: int64>, שבת: struct<pages: int64>, עירובין: struct<pages: int64>, פסחים: struct<pages: int64>, שקלים: struct<pages: int64>, יומא: struct<pages: int64>, סוכה: struct<pages: int64>, ביצה: struct<pages: int64>, ראש השנה: struct<pages: int64>, תענית: struct<pages: int64>, מגילה: struct<pages: int64>, מועד קטן: struct<pages: int64>, חגיגה: struct<pages: int64>, יבמות: struct<pages: int64>, כתובות: struct<pages: int64>, נדרים: struct<pages: int64>, נזיר: struct<pages: int64>, סוטה: struct<pages: int64>, גיטין: struct<pages: int64>, קידושין: struct<pages: int64>, בבא קמא: struct<pages: int64>, בבא מציעא: struct<pages: int64>, בבא בתרא: struct<pages: int64>, סנהדרין: struct<pages: int64>, מכות: struct<pages: int64>, שבועות: struct<pages: int64>, עדיות: struct<pages: int64>, עבודה זרה: struct<pages: int64>, אבות: struct<pages: int64>, הוריות: struct<pages: int64>, זבחים: struct<pages: int64>, מנחות: struct<pages: int64>, חולין: struct<pages: int64>, בכורות: struct<pages: int64>, ערכין: struct<pages: int64>, תמורה: struct<pages: int64>, כריתות: struct<pages: int64>, מעילה: struct<pages: int64>, תמיד: struct<pages: int64>, מדות: struct<pages: int64>, קינים: struct<pages: int64>, כלים: struct<pages: int64>, אהלות: struct<pages: int64>, נגעים: struct<pages: int64>, פרה: struct<pages: int64>, טהרות: struct<pages: int64>, מקואות: struct<pages: int64>, נדה: struct<pages: int64>, מכשירין: struct<pages: int64>, זבים: struct<pages: int64>, טבול יום: struct<pages: int64>, ידים: struct<pages: int64>, עוקצים: struct<pages: int64>>>>
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
בטח, הנה גרסה מעודכנת ומלאה של קובץ ה-README.md, המשקפת במדויק את מבנה קובצי ה-JSON שסיפקת, כולל ההיגיון של הקינון, חלוקה לחלקים והחרגות.
license: mit task_categories: - other language: - he tags: - hebrew - judaism - jewish-studies - structured-data - talmud - tanakh - halakha - rambam - mishna pretty_name: "Jewish Texts Structure Dataset" size_categories: - 10K<n<100K
Jewish Texts Structure Dataset
Summary
This dataset provides a structured, machine-readable catalog of the divisions (chapters, pages, sections, etc.) of fundamental Jewish texts. It is designed to be a foundational resource for developers and researchers building applications, tools, or conducting analyses related to Jewish studies.
The dataset contains 14,470 records, with each record representing a single unit of study (e.g., one chapter of Tanakh, one page-side (Amud) of Talmud, or one Siman in Shulchan Aruch).
The following corpora are included:
- Tanakh (תנ"ך): The Hebrew Bible, divided by Perek (chapter).
- Mishna (משנה): The six orders of the Mishna, divided by Perek (chapter).
- Talmud Bavli (תלמוד בבלי): The Babylonian Talmud, divided by Daf (folio) and Amud (page-side).
- Talmud Yerushalmi (תלמוד ירושלמי): The Jerusalem Talmud, divided by Daf (folio) and Amud (page-side).
- Rambam (רמב"ם): Maimonides' Mishneh Torah, divided by Sefer (book), Hilkhot (laws), and Perek (chapter).
- Halakha (הלכה): Major Halakhic codes, including:
- Arba'ah Turim (ארבע טורים)
- Shulchan Aruch (שולחן ערוך)
- Mishnah Berurah (משנה ברורה)
- Biur Halakha (ביאור הלכה)
Potential Use Cases
This dataset is not intended for training a model directly but serves as a structured knowledge base. Potential applications include:
- Study Trackers: Powering applications for tracking daily study cycles like Daf Yomi, Mishnah Yomit, or Rambam Yomi.
- API Development: Creating a REST API to query the structure of Jewish texts (e.g.,
GET /api/shas/berakhot
to retrieve all pages of the tractate). - Data Visualization: Generating visualizations to compare the lengths and structures of different books and sections.
- Educational Tools: Building backends for educational software that navigate or reference these texts.
- Linking to Content: Serving as a foundational index to link to full-text content from sources like Sefaria or Wikisource.
Languages
The data itself is structural, but all names for categories, books, and units are in Hebrew (he).
Dataset Structure
Data Instances
Each record is a dictionary representing a single, learnable unit.
Example from שולחן ערוך אורח חיים
(a simple structure):
{
"category": "הלכה",
"subcategory": "שולחן ערוך",
"book": "שולחן ערוך אורח חיים",
"part_name": null,
"unit_type": "סימן",
"unit_number": 25,
"unit_name": "סימן כ\"ה"
}
Example from תלמוד בבלי
(using part_name
for Amud):
{
"category": "תלמוד בבלי",
"subcategory": "סדר מועד",
"book": "שבת",
"part_name": "עמוד א",
"unit_type": "דף",
"unit_number": 2,
"unit_name": "דף ב' עמוד א"
}
Example from רמב"ם
(using part_name
for Hilkhot):
This shows how a single book (ספר המדע
) is broken down into parts (הלכות דעות
).
{
"category": "רמב\"ם",
"subcategory": "משנה תורה",
"book": "ספר המדע",
"part_name": "הלכות דעות",
"unit_type": "פרק",
"unit_number": 1,
"unit_name": "פרק א'"
}
Data Fields
category
(string): The highest-level collection, defined by thename
at the root of the source JSON file. e.g., "הלכה", "רמב"ם".subcategory
(string): A major section within a category, from thename
field of asubcategories
object. e.g., "שולחן ערוך", "משנה תורה", "סדר מועד".book
(string): The name of the specific book, tractate, or section. This is typically a key in thebooks
object in the source JSON. e.g., "בראשית", "שולחן ערוך חושן משפט", "ספר המדע", "ביאור הלכה".part_name
(string | null): An optional field for subdivisions within a book. This is used for different purposes depending on the text:- In the Talmud, it's
עמוד א
orעמוד ב
. - In the Rambam, it's the name of the laws (
הלכות
), e.g., "הלכות דעות". - In Mishnah Berurah and Biur Halakha, it's the volume number, e.g., "חלק א'".
- It is
null
if the book is not subdivided in this way (e.g., most of Shulchan Aruch).
- In the Talmud, it's
unit_type
(string): The name of the unit of division, defined bycontent_type
in the source JSON. e.g., "פרק", "דף", "סימן".unit_number
(int): The integer value of the unit, e.g.,1
for פרק א',120
for דף קכ.unit_name
(string): A human-readable name for the unit, combining the type and its Hebrew numerical representation (Gematria), e.g., "פרק י'", "דף ב' עמוד א", "סימן תכ"ט".
Data Splits
The dataset consists of a single split: train
.
Dataset Creation
Curation Rationale
The dataset was programmatically generated from a set of JSON configuration files that define the structure of each corpus. This approach was chosen to ensure consistency, accuracy, and easy maintainability. The source files are based on the canonical, standard print editions of these texts.
Source Data
The data was generated from a collection of hand-curated JSON files that describe the hierarchical structure of each text. The generation script parses these files according to their specific format:
- Simple Range: For texts like
שולחן ערוך אורח חיים
, the structure is defined by a simple"pages"
count (e.g.,{ "pages": 697 }
). The script generates units from 1 to this number. - Range with Exclusions: For texts like
טור יורה דעה
, the structure includes a"pages"
count and an"exclude"
array (e.g.,{ "pages": 403, "exclude": [169] }
). The script generates units from 1 to the page count, skipping any numbers present in the exclude list. - Structured Parts: For complex texts like Rambam or Mishnah Berurah, the structure is defined by a
"parts"
array. Each object in the array specifies aname
(which becomes thepart_name
in the output), astart
unit, and anend
unit. - Structured Parts with Exclusions: For texts like Biur Halakha, the structure combines the
parts
array with anexclude
list within each part, providing fine-grained control over which units are included.
This structured, declarative approach allows for a precise and verifiable representation of each text's canonical structure.
Annotations
The dataset is not annotated in a traditional sense. It is a structured representation of the canonical divisions of the texts. The generation process was fully automated based on the source JSON files.
Personal and Sensitive Information
This dataset contains no personal or sensitive information. It exclusively catalogs the structure of religious texts.
Additional Information
Dataset Curators
This dataset was curated and prepared by NHLOCAL.
Licensing Information
The dataset is released under the cc-by-4.0 License.
Citation Information
If you use this dataset in your work, please consider citing it as follows:
@dataset{nhlocal_judaic_texts_structure,
author = {NHLOCAL},
title = {judaic Texts Structure Dataset},
year = {2025},
publisher = {Hugging Face},
version = {1.1.0},
url = {https://huggingface.co/datasets/NHLOCAL/judaic-texts-structure}
}
- Downloads last month
- 108