id
stringlengths 17
29
| nl_statement
stringlengths 43
377
| lean4_src_header
stringclasses 14
values | lean4_formalization
stringlengths 50
426
|
---|---|---|---|
Artin|exercise_2_2_9 | Let $H$ be the subgroup generated by two elements $a, b$ of a group $G$. Prove that if $a b=b a$, then $H$ is an abelian group. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_2_2_9 {G : Type*} [Group G] {a b : G}
(h : a * b = b * a) :
β x y : closure {x | x = a β¨ x = b}, x*y = y*x := |
Artin|exercise_2_4_19 | Prove that if a group contains exactly one element of order 2 , then that element is in the center of the group. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_2_4_19 {G : Type*} [Group G] {x : G}
(hx : orderOf x = 2) (hx1 : β y, orderOf y = 2 β y = x) :
x β center G := |
Artin|exercise_2_11_3 | Prove that a group of even order contains an element of order $2 .$ | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_2_11_3 {G : Type*} [Group G] [Fintype G]
(hG : Even (card G)) : β x : G, orderOf x = 2 := |
Artin|exercise_3_5_6 | Let $V$ be a vector space which is spanned by a countably infinite set. Prove that every linearly independent subset of $V$ is finite or countably infinite. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_3_5_6 {K V : Type*} [Field K] [AddCommGroup V]
[Module K V] {S : Set V} (hS : Set.Countable S)
(hS1 : span K S = β€) {ΞΉ : Type*} (R : ΞΉ β V)
(hR : LinearIndependent K R) : Countable ΞΉ := |
Artin|exercise_6_1_14 | Let $Z$ be the center of a group $G$. Prove that if $G / Z$ is a cyclic group, then $G$ is abelian and hence $G=Z$. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_6_1_14 (G : Type*) [Group G]
(hG : IsCyclic $ G β§Έ (center G)) :
center G = β€ := |
Artin|exercise_6_4_3 | Prove that no group of order $p^2 q$, where $p$ and $q$ are prime, is simple. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_6_4_3 {G : Type*} [Group G] [Fintype G] {p q : β}
(hp : Prime p) (hq : Prime q) (hG : card G = p^2 *q) :
IsSimpleGroup G β false := |
Artin|exercise_6_8_1 | Prove that two elements $a, b$ of a group generate the same subgroup as $b a b^2, b a b^3$. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_6_8_1 {G : Type*} [Group G]
(a b : G) : closure ({a, b} : Set G) = Subgroup.closure {b*a*b^2, b*a*b^3} := |
Artin|exercise_10_2_4 | Prove that in the ring $\mathbb{Z}[x],(2) \cap(x)=(2 x)$. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_10_2_4 :
span ({2} : Set $ Polynomial β€) β (span {X}) =
span ({2 * X} : Set $ Polynomial β€) := |
Artin|exercise_10_4_6 | Let $I, J$ be ideals in a ring $R$. Prove that the residue of any element of $I \cap J$ in $R / I J$ is nilpotent. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_10_4_6 {R : Type*} [CommRing R]
(I J : Ideal R) (x : β(I β J)) :
IsNilpotent ((Ideal.Quotient.mk (I*J)) x) := |
Artin|exercise_10_7_10 | Let $R$ be a ring, with $M$ an ideal of $R$. Suppose that every element of $R$ which is not in $M$ is a unit of $R$. Prove that $M$ is a maximal ideal and that moreover it is the only maximal ideal of $R$. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_10_7_10 {R : Type*} [Ring R]
(M : Ideal R) (hM : β (x : R), x β M β IsUnit x)
(hProper : β x : R, x β M) :
IsMaximal M β§ β (N : Ideal R), IsMaximal N β N = M := |
Artin|exercise_11_4_1b | Prove that $x^3 + 6x + 12$ is irreducible in $\mathbb{Q}$. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_11_4_1b :
Irreducible (12 + 6 * X + X ^ 3 : Polynomial β) := |
Artin|exercise_11_4_6b | Prove that $x^2+1$ is irreducible in $\mathbb{F}_7$ | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_11_4_6b {F : Type*} [Field F] [Fintype F] (hF : card F = 7) :
Irreducible (X ^ 2 + 1 : Polynomial F) := |
Artin|exercise_11_4_8 | Let $p$ be a prime integer. Prove that the polynomial $x^n-p$ is irreducible in $\mathbb{Q}[x]$. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_11_4_8 (p : β) (hp : Prime p) (n : β) (hn : n > 0) :
Irreducible (X ^ n - (p : Polynomial β) : Polynomial β) := |
Artin|exercise_13_4_10 | Prove that if a prime integer $p$ has the form $2^r+1$, then it actually has the form $2^{2^k}+1$. | import Mathlib
open Function Fintype Subgroup Ideal Polynomial Submodule Zsqrtd
open scoped BigOperators
| theorem exercise_13_4_10
{p : β} {hp : Nat.Prime p} (h : β r : β, p = 2 ^ r + 1) :
β (k : β), p = 2 ^ (2 ^ k) + 1 := |
Axler|exercise_1_3 | Prove that $-(-v) = v$ for every $v \in V$. | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_1_3 {F V : Type*} [AddCommGroup V] [Field F]
[Module F V] {v : V} : -(-v) = v := |
Axler|exercise_1_6 | Give an example of a nonempty subset $U$ of $\mathbf{R}^2$ such that $U$ is closed under addition and under taking additive inverses (meaning $-u \in U$ whenever $u \in U$), but $U$ is not a subspace of $\mathbf{R}^2$. | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_1_6 : β U : Set (β Γ β),
(U β β
) β§
(β (u v : β Γ β), u β U β§ v β U β u + v β U) β§
(β (u : β Γ β), u β U β -u β U) β§
(β U' : Submodule β (β Γ β), U β βU') := |
Axler|exercise_1_8 | Prove that the intersection of any collection of subspaces of $V$ is a subspace of $V$. | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_1_8 {F V : Type*} [AddCommGroup V] [Field F]
[Module F V] {ΞΉ : Type*} (u : ΞΉ β Submodule F V) :
β U : Submodule F V, (β (i : ΞΉ), (u i).carrier) = βU := |
Axler|exercise_3_1 | Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if $\operatorname{dim} V=1$ and $T \in \mathcal{L}(V, V)$, then there exists $a \in \mathbf{F}$ such that $T v=a v$ for all $v \in V$. | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_3_1 {F V : Type*}
[AddCommGroup V] [Field F] [Module F V] [FiniteDimensional F V]
(T : V ββ[F] V) (hT : finrank F V = 1) :
β c : F, β v : V, T v = c β’ v:= |
Axler|exercise_4_4 | Suppose $p \in \mathcal{P}(\mathbf{C})$ has degree $m$. Prove that $p$ has $m$ distinct roots if and only if $p$ and its derivative $p^{\prime}$ have no roots in common. | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_4_4 (p : Polynomial β) :
p.degree = @card (rootSet p β) (rootSetFintype p β) β
Disjoint
(@card (rootSet (derivative p) β) (rootSetFintype (derivative p) β))
(@card (rootSet p β) (rootSetFintype p β)) := |
Axler|exercise_5_4 | Suppose that $S, T \in \mathcal{L}(V)$ are such that $S T=T S$. Prove that $\operatorname{null} (T-\lambda I)$ is invariant under $S$ for every $\lambda \in \mathbf{F}$. | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_5_4 {F V : Type*} [AddCommGroup V] [Field F]
[Module F V] (S T : V ββ[F] V) (hST : S β T = T β S) (c : F):
Submodule.map S (ker (T - c β’ LinearMap.id)) = ker (T - c β’ LinearMap.id) := |
Axler|exercise_5_12 | Suppose $T \in \mathcal{L}(V)$ is such that every vector in $V$ is an eigenvector of $T$. Prove that $T$ is a scalar multiple of the identity operator. | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_5_12 {F V : Type*} [AddCommGroup V] [Field F]
[Module F V] {S : End F V}
(hS : β v : V, β c : F, v β eigenspace S c) :
β c : F, S = c β’ LinearMap.id := |
Axler|exercise_5_20 | Suppose that $T \in \mathcal{L}(V)$ has $\operatorname{dim} V$ distinct eigenvalues and that $S \in \mathcal{L}(V)$ has the same eigenvectors as $T$ (not necessarily with the same eigenvalues). Prove that $S T=T S$. | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_5_20 {F V : Type*} [AddCommGroup V] [Field F]
[Module F V] [FiniteDimensional F V] {S T : End F V}
(h1 : card (T.Eigenvalues) = finrank F V)
(h2 : β v : V, (β c : F, v β eigenspace S c) β (β c : F, v β eigenspace T c)) :
S * T = T * S := |
Axler|exercise_6_2 | Suppose $u, v \in V$. Prove that $\langle u, v\rangle=0$ if and only if $\|u\| \leq\|u+a v\|$ for all $a \in \mathbf{F}$. | import Mathlib
open InnerProductSpace RCLike ContinuousLinearMap Complex
open scoped BigOperators
| theorem exercise_6_2 {V : Type*} [NormedAddCommGroup V] [NormedField F] [RCLike F]
[Module F V] [InnerProductSpace F V] (u v : V) :
βͺu, vβ«_F = 0 β β (a : F), βuβ β€ βu + a β’ vβ := |
Axler|exercise_6_7 | Prove that if $V$ is a complex inner-product space, then $\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}+\|u+i v\|^{2} i-\|u-i v\|^{2} i}{4}$ for all $u, v \in V$. | import Mathlib
open InnerProductSpace ContinuousLinearMap Complex
open scoped BigOperators
| theorem exercise_6_7 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace β V] (u v : V) :
βͺu, vβ«_β = (βu + vβ^2 - βu - vβ^2 + I*βu + Iβ’vβ^2 - I*βu-Iβ’vβ^2) / 4 := |
Axler|exercise_6_16 | Suppose $U$ is a subspace of $V$. Prove that $U^{\perp}=\{0\}$ if and only if $U=V$ | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_6_16 {K V : Type*} [RCLike K] [NormedAddCommGroup V] [InnerProductSpace K V]
{U : Submodule K V} :
U.orthogonal = β₯ β U = β€ := |
Axler|exercise_7_6 | Prove that if $T \in \mathcal{L}(V)$ is normal, then $\operatorname{range} T=\operatorname{range} T^{*}.$ | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_7_6 {V : Type*} [NormedAddCommGroup V] [RCLike F] [InnerProductSpace F V]
[FiniteDimensional F V] (T : End F V)
(hT : T * adjoint T = adjoint T * T) :
range T = range (adjoint T) := |
Axler|exercise_7_10 | Suppose $V$ is a complex inner-product space and $T \in \mathcal{L}(V)$ is a normal operator such that $T^{9}=T^{8}$. Prove that $T$ is self-adjoint and $T^{2}=T$. | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_7_10 {V : Type*} [NormedAddCommGroup V] [InnerProductSpace β V]
[FiniteDimensional β V] (T : End β V)
(hT : T * adjoint T = adjoint T * T) (hT1 : T^9 = T^8) :
IsSelfAdjoint T β§ T^2 = T := |
Axler|exercise_7_14 | Suppose $T \in \mathcal{L}(V)$ is self-adjoint, $\lambda \in \mathbf{F}$, and $\epsilon>0$. Prove that if there exists $v \in V$ such that $\|v\|=1$ and $\|T v-\lambda v\|<\epsilon,$ then $T$ has an eigenvalue $\lambda^{\prime}$ such that $\left|\lambda-\lambda^{\prime}\right|<\epsilon$. | import Mathlib
open Fintype Complex Polynomial LinearMap FiniteDimensional Module Module.End
open scoped BigOperators
| theorem exercise_7_14 {π V : Type*} [RCLike π] [NormedAddCommGroup V]
[InnerProductSpace π V] [FiniteDimensional π V]
{T : Module.End π V} (hT : IsSelfAdjoint T)
{l : π} {Ξ΅ : β} (he : Ξ΅ > 0) : (β v : V, βvβ= 1 β§ βT v - l β’ vβ < Ξ΅) β
(β l' : T.Eigenvalues, βl - l'β < Ξ΅) := |
Dummit-Foote|exercise_1_1_3 | Prove that the addition of residue classes $\mathbb{Z}/n\mathbb{Z}$ is associative. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_1_1_3 (n : β) :
β (x y z : ZMod n), (x + y) + z = x + (y + z) := |
Dummit-Foote|exercise_1_1_5 | Prove that for all $n>1$ that $\mathbb{Z}/n\mathbb{Z}$ is not a group under multiplication of residue classes. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_1_1_5 (n : β) (hn : 1 < n) :
IsEmpty (Group (ZMod n)) := |
Dummit-Foote|exercise_1_1_16 | Let $x$ be an element of $G$. Prove that $x^2=1$ if and only if $|x|$ is either $1$ or $2$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_1_1_16 {G : Type*} [Group G]
(x : G) : x ^ 2 = 1 β (orderOf x = 1 β¨ orderOf x = 2) := |
Dummit-Foote|exercise_1_1_18 | Let $x$ and $y$ be elements of $G$. Prove that $xy=yx$ if and only if $y^{-1}xy=x$ if and only if $x^{-1}y^{-1}xy=1$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_1_1_18 {G : Type*} [Group G]
(x y : G) : (x * y = y * x β yβ»ΒΉ * x * y = x) β§ (yβ»ΒΉ * x * y = x β xβ»ΒΉ * yβ»ΒΉ * x * y = 1) := |
Dummit-Foote|exercise_1_1_22a | If $x$ and $g$ are elements of the group $G$, prove that $|x|=\left|g^{-1} x g\right|$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_1_1_22a {G : Type*} [Group G] (x g : G) :
orderOf x = orderOf (gβ»ΒΉ * x * g) := |
Dummit-Foote|exercise_1_1_25 | Prove that if $x^{2}=1$ for all $x \in G$ then $G$ is abelian. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_1_1_25 {G : Type*} [Group G]
(h : β x : G, x ^ 2 = 1) : β a b : G, a*b = b*a := |
Dummit-Foote|exercise_1_1_34 | If $x$ is an element of infinite order in $G$, prove that the elements $x^{n}, n \in \mathbb{Z}$ are all distinct. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_1_1_34 {G : Type*} [Group G] {x : G}
(hx_inf : orderOf x = 0) (n m : β€) (hnm : n β m) :
x ^ n β x ^ m := |
Dummit-Foote|exercise_1_6_4 | Prove that the multiplicative groups $\mathbb{R}-\{0\}$ and $\mathbb{C}-\{0\}$ are not isomorphic. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_1_6_4 :
IsEmpty (Multiplicative β β* Multiplicative β) := |
Dummit-Foote|exercise_1_6_17 | Let $G$ be any group. Prove that the map from $G$ to itself defined by $g \mapsto g^{-1}$ is a homomorphism if and only if $G$ is abelian. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_1_6_17 {G : Type*} [Group G] (f : G β G)
(hf : f = Ξ» g => gβ»ΒΉ) :
(β x y : G, f x * f y = f (x*y)) β β x y : G, x*y = y*x := |
Dummit-Foote|exercise_2_1_5 | Prove that $G$ cannot have a subgroup $H$ with $|H|=n-1$, where $n=|G|>2$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_2_1_5 {G : Type*} [Group G] [Fintype G]
(hG : card G > 2) (H : Subgroup G) [Fintype H] :
card H β card G - 1 := |
Dummit-Foote|exercise_2_4_4 | Prove that if $H$ is a subgroup of $G$ then $H$ is generated by the set $H-\{1\}$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_2_4_4 {G : Type*} [Group G] (H : Subgroup G) :
closure ((H : Set G) \ {1}) = H := |
Dummit-Foote|exercise_2_4_16b | Show that the subgroup of all rotations in a dihedral group is a maximal subgroup. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_2_4_16b {n : β} {hn : n β 0}
{R : Subgroup (DihedralGroup n)}
(hR : R = Subgroup.closure {DihedralGroup.r 1}) :
R β β€ β§
β K : Subgroup (DihedralGroup n), R β€ K β K = R β¨ K = β€ := |
Dummit-Foote|exercise_3_1_3a | Let $A$ be an abelian group and let $B$ be a subgroup of $A$. Prove that $A / B$ is abelian. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_3_1_3a {A : Type*} [CommGroup A] (B : Subgroup A) :
β a b : A β§Έ B, a*b = b*a := |
Dummit-Foote|exercise_3_1_22b | Prove that the intersection of an arbitrary nonempty collection of normal subgroups of a group is a normal subgroup (do not assume the collection is countable). | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_3_1_22b {G : Type*} [Group G] (I : Type*) [Nonempty I]
(H : I β Subgroup G) (hH : β i : I, Normal (H i)) :
Normal (β¨
(i : I), H i):= |
Dummit-Foote|exercise_3_2_11 | Let $H \leq K \leq G$. Prove that $|G: H|=|G: K| \cdot|K: H|$ (do not assume $G$ is finite). | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_3_2_11 {G : Type*} [Group G] {H K : Subgroup G}
(hHK : H β€ K) :
H.index = K.index * H.relindex K := |
Dummit-Foote|exercise_3_2_21a | Prove that $\mathbb{Q}$ has no proper subgroups of finite index. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_3_2_21a (H : AddSubgroup β) (hH : H β β€) : H.index = 0 := |
Dummit-Foote|exercise_3_4_1 | Prove that if $G$ is an abelian simple group then $G \cong Z_{p}$ for some prime $p$ (do not assume $G$ is a finite group). | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_3_4_1 (G : Type*) [CommGroup G] [IsSimpleGroup G] :
IsCyclic G β§ β G_fin : Fintype G, Nat.Prime (@card G G_fin) := |
Dummit-Foote|exercise_3_4_5a | Prove that subgroups of a solvable group are solvable. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_3_4_5a {G : Type*} [Group G]
(H : Subgroup G) [IsSolvable G] : IsSolvable H := |
Dummit-Foote|exercise_3_4_11 | Prove that if $H$ is a nontrivial normal subgroup of the solvable group $G$ then there is a nontrivial subgroup $A$ of $H$ with $A \unlhd G$ and $A$ abelian. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_3_4_11 {G : Type*} [Group G] [IsSolvable G]
{H : Subgroup G} (hH : H β β₯) [H.Normal] :
β A β€ H, A β β₯ β§ A.Normal β§ β a b : A, a*b = b*a := |
Dummit-Foote|exercise_4_2_14 | Let $G$ be a finite group of composite order $n$ with the property that $G$ has a subgroup of order $k$ for each positive integer $k$ dividing $n$. Prove that $G$ is not simple. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_2_14 {G : Type*} [Fintype G] [Group G]
(hG : Β¬ (card G).Prime) (hG1 : β k : β, k β£ card G β
β (H : Subgroup G) (fH : Fintype H), @card H fH = k) :
Β¬ IsSimpleGroup G := |
Dummit-Foote|exercise_4_3_26 | Let $G$ be a transitive permutation group on the finite set $A$ with $|A|>1$. Show that there is some $\sigma \in G$ such that $\sigma(a) \neq a$ for all $a \in A$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_3_26 {Ξ± : Type*} [Fintype Ξ±] (ha : card Ξ± > 1)
(h_tran : β a b: Ξ±, β Ο : Equiv.Perm Ξ±, Ο a = b) :
β Ο : Equiv.Perm Ξ±, β a : Ξ±, Ο a β a := |
Dummit-Foote|exercise_4_4_6a | Prove that characteristic subgroups are normal. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_4_6a {G : Type*} [Group G] (H : Subgroup G)
[Characteristic H] : Normal H := |
Dummit-Foote|exercise_4_4_7 | If $H$ is the unique subgroup of a given order in a group $G$ prove $H$ is characteristic in $G$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_4_7 {G : Type*} [Group G] {H : Subgroup G} [Fintype H]
(hH : β (K : Subgroup G) (fK : Fintype K), card H = @card K fK β H = K) :
H.Characteristic := |
Dummit-Foote|exercise_4_5_1a | Prove that if $P \in \operatorname{Syl}_{p}(G)$ and $H$ is a subgroup of $G$ containing $P$ then $P \in \operatorname{Syl}_{p}(H)$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_5_1a {p : β} {G : Type*} [Group G]
{P : Sylow p G} (H : Subgroup G) (hH : P β€ H) :
IsPGroup p (P.subgroupOf H) β§
β (Q : Subgroup H), IsPGroup p Q β (P.subgroupOf H) β€ Q β Q = (P.subgroupOf H) := |
Dummit-Foote|exercise_4_5_14 | Prove that a group of order 312 has a normal Sylow $p$-subgroup for some prime $p$ dividing its order. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_5_14 {G : Type*} [Group G] [Fintype G]
(hG : card G = 312) :
β (p : β) (P : Sylow p G), p.Prime β§ (p β£ card G) β§ P.Normal := |
Dummit-Foote|exercise_4_5_16 | Let $|G|=p q r$, where $p, q$ and $r$ are primes with $p<q<r$. Prove that $G$ has a normal Sylow subgroup for either $p, q$ or $r$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_5_16 {p q r : β} {G : Type*} [Group G]
[Fintype G] (hpqr : p < q β§ q < r)
(hpqr1 : p.Prime β§ q.Prime β§ r.Prime)(hG : card G = p*q*r) :
(β (P : Sylow p G), P.Normal) β¨ (β (P : Sylow q G), P.Normal) β¨ (β (P : Sylow r G), P.Normal) := |
Dummit-Foote|exercise_4_5_18 | Prove that a group of order 200 has a normal Sylow 5-subgroup. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_5_18 {G : Type*} [Fintype G] [Group G]
(hG : card G = 200) :
β N : Sylow 5 G, N.Normal := |
Dummit-Foote|exercise_4_5_20 | Prove that if $|G|=1365$ then $G$ is not simple. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_5_20 {G : Type*} [Fintype G] [Group G]
(hG : card G = 1365) : Β¬ IsSimpleGroup G := |
Dummit-Foote|exercise_4_5_22 | Prove that if $|G|=132$ then $G$ is not simple. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_5_22 {G : Type*} [Fintype G] [Group G]
(hG : card G = 132) : Β¬ IsSimpleGroup G := |
Dummit-Foote|exercise_4_5_28 | Let $G$ be a group of order 105. Prove that if a Sylow 3-subgroup of $G$ is normal then $G$ is abelian. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_4_5_28 {G : Type*} [Group G] [Fintype G]
(hG : card G = 105) (P : Sylow 3 G) [hP : P.Normal] :
β a b : G, a*b = b*a := |
Dummit-Foote|exercise_5_4_2 | Prove that a subgroup $H$ of $G$ is normal if and only if $[G, H] \leq H$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_5_4_2 {G : Type*} [Group G] (H : Subgroup G) :
H.Normal β β
(β€ : Subgroup G), Hβ β€ H := |
Dummit-Foote|exercise_7_1_11 | Prove that if $R$ is an integral domain and $x^{2}=1$ for some $x \in R$ then $x=\pm 1$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_7_1_11 {R : Type*} [CommRing R] [IsDomain R]
{x : R} (hx : x^2 = 1) : x = 1 β¨ x = -1 := |
Dummit-Foote|exercise_7_1_15 | A ring $R$ is called a Boolean ring if $a^{2}=a$ for all $a \in R$. Prove that every Boolean ring is commutative. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_7_1_15 {R : Type*} [Ring R] (hR : β a : R, a^2 = a) :
β a b : R, a*b = b*a := |
Dummit-Foote|exercise_7_2_12 | Let $G=\left\{g_{1}, \ldots, g_{n}\right\}$ be a finite group. Prove that the element $N=g_{1}+g_{2}+\ldots+g_{n}$ is in the center of the group ring $R G$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_7_2_12 {R G : Type*} [Ring R] [Group G] [Fintype G] :
β g : G, MonoidAlgebra.of R G g β center (MonoidAlgebra R G) := |
Dummit-Foote|exercise_7_3_37 | An ideal $N$ is called nilpotent if $N^{n}$ is the zero ideal for some $n \geq 1$. Prove that the ideal $p \mathbb{Z} / p^{m} \mathbb{Z}$ is a nilpotent ideal in the ring $\mathbb{Z} / p^{m} \mathbb{Z}$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_7_3_37 {p m : β} (hp : p.Prime) :
IsNilpotent (span ({βp} : Set $ ZMod $ p^m) : Ideal $ ZMod $ p^m) := |
Dummit-Foote|exercise_8_1_12 | Let $N$ be a positive integer. Let $M$ be an integer relatively prime to $N$ and let $d$ be an integer relatively prime to $\varphi(N)$, where $\varphi$ denotes Euler's $\varphi$-function. Prove that if $M_{1} \equiv M^{d} \pmod N$ then $M \equiv M_{1}^{d^{\prime}} \pmod N$ where $d^{\prime}$ is the inverse of $d \bmod \varphi(N)$: $d d^{\prime} \equiv 1 \pmod {\varphi(N)}$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_8_1_12 {N : β} (hN : N > 0) {M M': β€} {d : β}
(hMN : M.gcd N = 1) (hMd : d.gcd N.totient = 1)
(hM' : M' β‘ M^d [ZMOD N]) :
β d' : β, d' * d β‘ 1 [ZMOD N.totient] β§
M β‘ M'^d' [ZMOD N] := |
Dummit-Foote|exercise_8_3_4 | Prove that if an integer is the sum of two rational squares, then it is the sum of two integer squares. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_8_3_4 {n : β€} {r s : β}
(h : r^2 + s^2 = n) :
β a b : β€, a^2 + b^2 = n := |
Dummit-Foote|exercise_8_3_6a | Prove that the quotient ring $\mathbb{Z}[i] /(1+i)$ is a field of order 2. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_8_3_6a {R : Type} [Ring R]
(hR : R = (GaussianInt β§Έ span ({β¨1, 1β©} : Set GaussianInt))) :
IsField R β§ β finR : Fintype R, @card R finR = 2 := |
Dummit-Foote|exercise_9_1_6 | Prove that $(x, y)$ is not a principal ideal in $\mathbb{Q}[x, y]$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_9_1_6 : Β¬ Submodule.IsPrincipal
(span ({MvPolynomial.X 0, MvPolynomial.X 1} : Set (MvPolynomial (Fin 2) β))) := |
Dummit-Foote|exercise_9_3_2 | Prove that if $f(x)$ and $g(x)$ are polynomials with rational coefficients whose product $f(x) g(x)$ has integer coefficients, then the product of any coefficient of $g(x)$ with any coefficient of $f(x)$ is an integer. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_9_3_2 {f g : Polynomial β} (i j : β)
(hfg : β n : β, β a : β€, (f*g).coeff = a) :
β a : β€, f.coeff i * g.coeff j = a := |
Dummit-Foote|exercise_9_4_2b | Prove that $x^6+30x^5-15x^3 + 6x-120$ is irreducible in $\mathbb{Z}[x]$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_9_4_2b : Irreducible
(X^6 + 30*X^5 - 15*X^3 + 6*X - 120 : Polynomial β€) := |
Dummit-Foote|exercise_9_4_2d | Prove that $\frac{(x+2)^p-2^p}{x}$, where $p$ is an odd prime, is irreducible in $\mathbb{Z}[x]$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_9_4_2d {p : β} (hp : p.Prime β§ p > 2)
{f : Polynomial β€} (hf : f = (X + 2)^p):
Irreducible (β n in (f.support \ {0}), (f.coeff n : Polynomial β€) * X ^ (n-1) :
Polynomial β€) := |
Dummit-Foote|exercise_9_4_11 | Prove that $x^2+y^2-1$ is irreducible in $\mathbb{Q}[x,y]$. | import Mathlib
open Fintype Subgroup Set Polynomial Ideal
open scoped BigOperators
| theorem exercise_9_4_11 :
Irreducible ((MvPolynomial.X 0)^2 + (MvPolynomial.X 1)^2 - 1 : MvPolynomial (Fin 2) β) := |
Herstein|exercise_2_1_21 | Show that a group of order 5 must be abelian. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_1_21 (G : Type*) [Group G] [Fintype G]
(hG : card G = 5) :
β a b : G, a*b = b*a := |
Herstein|exercise_2_1_27 | If $G$ is a finite group, prove that there is an integer $m > 0$ such that $a^m = e$ for all $a \in G$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_1_27 {G : Type*} [Group G]
[Fintype G] : β (m : β), m > 0 β§ β (a : G), a ^ m = 1 := |
Herstein|exercise_2_2_5 | Let $G$ be a group in which $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all $a, b \in G$. Show that $G$ is abelian. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_2_5 {G : Type*} [Group G]
(h : β (a b : G), (a * b) ^ 3 = a ^ 3 * b ^ 3 β§ (a * b) ^ 5 = a ^ 5 * b ^ 5) :
β a b : G, a*b = b*a := |
Herstein|exercise_2_3_17 | If $G$ is a group and $a, x \in G$, prove that $C\left(x^{-1} a x\right)=x^{-1} C(a) x$ | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_3_17 {G : Type*} [Mul G] [Group G] (a x : G) :
centralizer {xβ»ΒΉ*a*x} =
(Ξ» g : G => xβ»ΒΉ*g*x) '' (centralizer {a}) := |
Herstein|exercise_2_4_36 | If $a > 1$ is an integer, show that $n \mid \varphi(a^n - 1)$, where $\phi$ is the Euler $\varphi$-function. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_4_36 {a n : β} (h : a > 1) :
n β£ (a ^ n - 1).totient := |
Herstein|exercise_2_5_30 | Suppose that $|G| = pm$, where $p \nmid m$ and $p$ is a prime. If $H$ is a normal subgroup of order $p$ in $G$, prove that $H$ is characteristic. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_5_30 {G : Type*} [Group G] [Fintype G]
{p m : β} (hp : Nat.Prime p) (hp1 : Β¬ p β£ m) (hG : card G = p*m)
{H : Subgroup G} [Fintype H] [H.Normal] (hH : card H = p):
Subgroup.Characteristic H := |
Herstein|exercise_2_5_37 | If $G$ is a nonabelian group of order 6, prove that $G \simeq S_3$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_5_37 (G : Type*) [Group G] [Fintype G]
(hG : card G = 6) (hG' : IsEmpty (CommGroup G)) :
Nonempty (G β* Equiv.Perm (Fin 3)) := |
Herstein|exercise_2_5_44 | Prove that a group of order $p^2$, $p$ a prime, has a normal subgroup of order $p$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_5_44 {G : Type*} [Group G] [Fintype G] {p : β}
(hp : Nat.Prime p) (hG : card G = p^2) :
β (N : Subgroup G) (Fin : Fintype N), @card N Fin = p β§ N.Normal := |
Herstein|exercise_2_6_15 | If $G$ is an abelian group and if $G$ has an element of order $m$ and one of order $n$, where $m$ and $n$ are relatively prime, prove that $G$ has an element of order $mn$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_6_15 {G : Type*} [CommGroup G] {m n : β}
(hm : β (g : G), orderOf g = m)
(hn : β (g : G), orderOf g = n)
(hmn : m.Coprime n) :
β (g : G), orderOf g = m * n := |
Herstein|exercise_2_8_12 | Prove that any two nonabelian groups of order 21 are isomorphic. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_8_12 {G H : Type*} [Fintype G] [Fintype H]
[Group G] [Group H] (hG : card G = 21) (hH : card H = 21)
(hG1 : IsEmpty (CommGroup G)) (hH1 : IsEmpty (CommGroup H)) :
Nonempty (G β* H) := |
Herstein|exercise_2_9_2 | If $G_1$ and $G_2$ are cyclic groups of orders $m$ and $n$, respectively, prove that $G_1 \times G_2$ is cyclic if and only if $m$ and $n$ are relatively prime. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_9_2 {G H : Type*} [Fintype G] [Fintype H] [Group G]
[Group H] (hG : IsCyclic G) (hH : IsCyclic H) :
IsCyclic (G Γ H) β (card G).Coprime (card H) := |
Herstein|exercise_2_11_6 | If $P$ is a $p$-Sylow subgroup of $G$ and $P \triangleleft G$, prove that $P$ is the only $p$-Sylow subgroup of $G$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_11_6 {G : Type*} [Group G] {p : β} (hp : Nat.Prime p)
{P : Sylow p G} (hP : P.Normal) :
β (Q : Sylow p G), P = Q := |
Herstein|exercise_2_11_22 | Show that any subgroup of order $p^{n-1}$ in a group $G$ of order $p^n$ is normal in $G$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_2_11_22 {p : β} {n : β} {G : Type*} [Fintype G]
[Group G] (hp : Nat.Prime p) (hG : card G = p ^ n) {K : Subgroup G}
[Fintype K] (hK : card K = p ^ (n-1)) :
K.Normal := |
Herstein|exercise_4_1_19 | Show that there is an infinite number of solutions to $x^2 = -1$ in the quaternions. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_4_1_19 : Infinite {x : Quaternion β | x^2 = -1} := |
Herstein|exercise_4_2_5 | Let $R$ be a ring in which $x^3 = x$ for every $x \in R$. Prove that $R$ is commutative. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_4_2_5 {R : Type*} [Ring R]
(h : β x : R, x ^ 3 = x) : Nonempty (CommRing R) := |
Herstein|exercise_4_2_9 | Let $p$ be an odd prime and let $1 + \frac{1}{2} + ... + \frac{1}{p - 1} = \frac{a}{b}$, where $a, b$ are integers. Show that $p \mid a$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_4_2_9 {p : β} (hp : Nat.Prime p) (hp1 : Odd p) :
β (a b : β€), (a / b : β) = β i in Finset.range (p-1), (1 / (i + 1) : β) β βp β£ a := |
Herstein|exercise_4_3_25 | Let $R$ be the ring of $2 \times 2$ matrices over the real numbers; suppose that $I$ is an ideal of $R$. Show that $I = (0)$ or $I = R$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_4_3_25 (I : Ideal (Matrix (Fin 2) (Fin 2) β)) :
I = β₯ β¨ I = β€ := |
Herstein|exercise_4_5_16 | Let $F = \mathbb{Z}_p$ be the field of integers $\mod p$, where $p$ is a prime, and let $q(x) \in F[x]$ be irreducible of degree $n$. Show that $F[x]/(q(x))$ is a field having at exactly $p^n$ elements. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_4_5_16 {p n: β} (hp : Nat.Prime p)
{q : Polynomial (ZMod p)} (hq : Irreducible q) (hn : q.degree = n) :
(β is_fin : Fintype $ Polynomial (ZMod p) β§Έ span ({q}),
@card (Polynomial (ZMod p) β§Έ span {q}) is_fin = p ^ n) β§
IsField (Polynomial (ZMod p) β§Έ span {q}) := |
Herstein|exercise_4_5_25 | If $p$ is a prime, show that $q(x) = 1 + x + x^2 + \cdots x^{p - 1}$ is irreducible in $Q[x]$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_4_5_25 {p : β} (hp : Nat.Prime p) :
Irreducible (β i in Finset.range p, X ^ i : Polynomial β) := |
Herstein|exercise_4_6_3 | Show that there is an infinite number of integers a such that $f(x) = x^7 + 15x^2 - 30x + a$ is irreducible in $Q[x]$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_4_6_3 :
Infinite {a : β€ | Irreducible (X^7 + 15*X^2 - 30*X + (a : Polynomial β) : Polynomial β)} := |
Herstein|exercise_5_2_20 | Let $V$ be a vector space over an infinite field $F$. Show that $V$ cannot be the set-theoretic union of a finite number of proper subspaces of $V$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_5_2_20 {F V ΞΉ: Type*} [Infinite F] [Field F]
[AddCommGroup V] [Module F V] [Finite ΞΉ] {u : ΞΉ β Submodule F V}
(hu : β i : ΞΉ, u i β β€) :
(β i : ΞΉ, (u i : Set V)) β β€ := |
Herstein|exercise_5_3_10 | Prove that $\cos 1^{\circ}$ is algebraic over $\mathbb{Q}$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_5_3_10 : IsAlgebraic β (cos (Real.pi / 180)) := |
Herstein|exercise_5_5_2 | Prove that $x^3 - 3x - 1$ is irreducible over $\mathbb{Q}$. | import Mathlib
open Fintype Set Real Ideal Polynomial
open scoped BigOperators
| theorem exercise_5_5_2 : Irreducible (X^3 - 3*X - 1 : Polynomial β) := |
Ireland-Rosen|exercise_1_27 | For all odd $n$ show that $8 \mid n^{2}-1$. | import Mathlib
open Real
open scoped BigOperators
| theorem exercise_1_27 {n : β} (hn : Odd n) : 8 β£ (n^2 - 1) := |
Ireland-Rosen|exercise_1_31 | Show that 2 is divisible by $(1+i)^{2}$ in $\mathbb{Z}[i]$. | import Mathlib
open Real
open scoped BigOperators
| theorem exercise_1_31 : (β¨1, 1β© : GaussianInt) ^ 2 β£ 2 := |
Ireland-Rosen|exercise_2_21 | Define $\wedge(n)=\log p$ if $n$ is a power of $p$ and zero otherwise. Prove that $\sum_{A \mid n} \mu(n / d) \log d$ $=\wedge(n)$. | import Mathlib
open Real
open scoped BigOperators
| theorem exercise_2_21 {l : β β β}
(hl : β p n : β, p.Prime β l (p^n) = log p )
(hl1 : β m : β, Β¬ IsPrimePow m β l m = 0) :
l = Ξ» n => β d : Nat.divisors n, ArithmeticFunction.moebius (n/d) * log d := |
Ireland-Rosen|exercise_3_1 | Show that there are infinitely many primes congruent to $-1$ modulo 6 . | import Mathlib
open Real
open scoped BigOperators
| theorem exercise_3_1 : Infinite {p : Nat.Primes // p β‘ -1 [ZMOD 6]} := |
Ireland-Rosen|exercise_3_5 | Show that the equation $7 x^{3}+2=y^{3}$ has no solution in integers. | import Mathlib
open Real
open scoped BigOperators
| theorem exercise_3_5 : Β¬ β x y : β€, 7*x^3 + 2 = y^3 := |
Ireland-Rosen|exercise_3_14 | Let $p$ and $q$ be distinct odd primes such that $p-1$ divides $q-1$. If $(n, p q)=1$, show that $n^{q-1} \equiv 1(p q)$. | import Mathlib
open Real
open scoped BigOperators
| theorem exercise_3_14 {p q n : β} (hp0 : p.Prime β§ p > 2)
(hq0 : q.Prime β§ q > 2) (hpq0 : p β q) (hpq1 : p - 1 β£ q - 1)
(hn : n.gcd (p*q) = 1) :
n^(q-1) β‘ 1 [MOD p*q] := |
ProofNet#
ProofNet# is a Lean 4 port of the ProofNet benchmark including fixes. This benchmark has been made compatible for all Lean versions between v4.7.0 and v4.16.0.
A comparison with some of the other existing ports can be found at: https://proofnet4-fix.streamlit.app/.
Original Dataset Summary
ProofNet is a benchmark for autoformalization and formal proving of undergraduate-level mathematics. The ProofNet benchmarks consists of 371 examples, each consisting of a formal theorem statement in Lean 3, a natural language theorem statement, and a natural language proof. The problems are primarily drawn from popular undergraduate pure mathematics textbooks and cover topics such as real and complex analysis, linear algebra, abstract algebra, and topology. We intend for ProofNet to be a challenging benchmark that will drive progress in autoformalization and automatic theorem proving.
Citation
ProofNet# is introduced in Improving Autoformalization using Type Checking.
@misc{poiroux2024improvingautoformalizationusingtype,
title={Improving Autoformalization using Type Checking},
author={Auguste Poiroux and Gail Weiss and Viktor KunΔak and Antoine Bosselut},
year={2024},
eprint={2406.07222},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2406.07222},
}
Original work where ProofNet has been introduced:
@misc{azerbayev2023proofnet,
title={ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathematics},
author={Zhangir Azerbayev and Bartosz Piotrowski and Hailey Schoelkopf and Edward W. Ayers and Dragomir Radev and Jeremy Avigad},
year={2023},
eprint={2302.12433},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Data Fields
id: Unique string identifier for the problem.
nl_statement: Natural language theorem statement.
lean4_src_header: File header including imports, namespaces, and locales required for the formal statement.
lean4_formalization: Formal theorem statement in Lean 4.
- Downloads last month
- 11