klamike commited on
Commit
f09001d
·
verified ·
1 Parent(s): ee8958b

Add files using upload-large-folder tool

Browse files
PGLearn-Small-89_pegase.py ADDED
@@ -0,0 +1,397 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from dataclasses import dataclass
3
+ from pathlib import Path
4
+ import json
5
+ import gzip
6
+
7
+ import datasets as hfd
8
+ import h5py
9
+ import pyarrow as pa
10
+
11
+ # ┌──────────────┐
12
+ # │ Metadata │
13
+ # └──────────────┘
14
+
15
+ @dataclass
16
+ class CaseSizes:
17
+ n_bus: int
18
+ n_load: int
19
+ n_gen: int
20
+ n_branch: int
21
+
22
+ CASENAME = "89_pegase"
23
+ SIZES = CaseSizes(n_bus=89, n_load=35, n_gen=12, n_branch=210)
24
+ NUM_TRAIN = 704792
25
+ NUM_TEST = 176198
26
+ NUM_INFEASIBLE = 119010
27
+
28
+ URL = "https://huggingface.co/datasets/PGLearn/PGLearn-Small-89_pegase"
29
+ DESCRIPTION = """\
30
+ The 89_pegase PGLearn optimal power flow dataset, part of the PGLearn-Small collection. \
31
+ """
32
+ VERSION = hfd.Version("1.0.0")
33
+ DEFAULT_CONFIG_DESCRIPTION="""\
34
+ This configuration contains feasible input, metadata, primal solution, and dual solution data \
35
+ for the ACOPF, DCOPF, and SOCOPF formulations on the {case} system.
36
+ """
37
+ USE_ML4OPF_WARNING = """
38
+ ================================================================================================
39
+ Loading PGLearn-Small-89_pegase through the `datasets.load_dataset` function may be slow.
40
+
41
+ Consider using ML4OPF to directly convert to `torch.Tensor`; for more info see:
42
+ https://github.com/AI4OPT/ML4OPF?tab=readme-ov-file#manually-loading-data
43
+
44
+ Or, use `huggingface_hub.snapshot_download` and an HDF5 reader; for more info see:
45
+ https://huggingface.co/datasets/PGLearn/PGLearn-Small-89_pegase#downloading-individual-files
46
+ ================================================================================================
47
+ """
48
+ CITATION = """\
49
+ @article{klamkinpglearn,
50
+ title={{PGLearn - An Open-Source Learning Toolkit for Optimal Power Flow}},
51
+ author={Klamkin, Michael and Tanneau, Mathieu and Van Hentenryck, Pascal},
52
+ year={2025},
53
+ }\
54
+ """
55
+
56
+ IS_COMPRESSED = True
57
+
58
+ # ┌──────────────────┐
59
+ # │ Formulations │
60
+ # └──────────────────┘
61
+
62
+ def acopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
63
+ features = {}
64
+ if primal: features.update(acopf_primal_features(sizes))
65
+ if dual: features.update(acopf_dual_features(sizes))
66
+ if meta: features.update({f"ACOPF/{k}": v for k, v in META_FEATURES.items()})
67
+ return features
68
+
69
+ def dcopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
70
+ features = {}
71
+ if primal: features.update(dcopf_primal_features(sizes))
72
+ if dual: features.update(dcopf_dual_features(sizes))
73
+ if meta: features.update({f"DCOPF/{k}": v for k, v in META_FEATURES.items()})
74
+ return features
75
+
76
+ def socopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
77
+ features = {}
78
+ if primal: features.update(socopf_primal_features(sizes))
79
+ if dual: features.update(socopf_dual_features(sizes))
80
+ if meta: features.update({f"SOCOPF/{k}": v for k, v in META_FEATURES.items()})
81
+ return features
82
+
83
+ FORMULATIONS_TO_FEATURES = {
84
+ "ACOPF": acopf_features,
85
+ "DCOPF": dcopf_features,
86
+ "SOCOPF": socopf_features,
87
+ }
88
+
89
+ # ┌───────────────────┐
90
+ # │ BuilderConfig │
91
+ # └───────────────────┘
92
+
93
+ class PGLearnSmall89_pegaseConfig(hfd.BuilderConfig):
94
+ """BuilderConfig for PGLearn-Small-89_pegase.
95
+ By default, primal solution data, metadata, input, casejson, are included for the train and test splits.
96
+
97
+ To modify the default configuration, pass attributes of this class to `datasets.load_dataset`:
98
+
99
+ Attributes:
100
+ formulations (list[str]): The formulation(s) to include, e.g. ["ACOPF", "DCOPF"]
101
+ primal (bool, optional): Include primal solution data. Defaults to True.
102
+ dual (bool, optional): Include dual solution data. Defaults to False.
103
+ meta (bool, optional): Include metadata. Defaults to True.
104
+ input (bool, optional): Include input data. Defaults to True.
105
+ casejson (bool, optional): Include case.json data. Defaults to True.
106
+ train (bool, optional): Include training samples. Defaults to True.
107
+ test (bool, optional): Include testing samples. Defaults to True.
108
+ infeasible (bool, optional): Include infeasible samples. Defaults to False.
109
+ """
110
+ def __init__(self,
111
+ formulations: list[str],
112
+ primal: bool=True, dual: bool=False, meta: bool=True, input: bool = True, casejson: bool=True,
113
+ train: bool=True, test: bool=True, infeasible: bool=False,
114
+ compressed: bool=IS_COMPRESSED, **kwargs
115
+ ):
116
+ super(PGLearnSmall89_pegaseConfig, self).__init__(version=VERSION, **kwargs)
117
+
118
+ self.case = CASENAME
119
+ self.formulations = formulations
120
+
121
+ self.primal = primal
122
+ self.dual = dual
123
+ self.meta = meta
124
+ self.input = input
125
+ self.casejson = casejson
126
+
127
+ self.train = train
128
+ self.test = test
129
+ self.infeasible = infeasible
130
+
131
+ self.gz_ext = ".gz" if compressed else ""
132
+
133
+ @property
134
+ def size(self):
135
+ return SIZES
136
+
137
+ @property
138
+ def features(self):
139
+ features = {}
140
+ if self.casejson: features.update(case_features())
141
+ if self.input: features.update(input_features(SIZES))
142
+ for formulation in self.formulations:
143
+ features.update(FORMULATIONS_TO_FEATURES[formulation](SIZES, self.primal, self.dual, self.meta))
144
+ return hfd.Features(features)
145
+
146
+ @property
147
+ def splits(self):
148
+ splits: dict[hfd.Split, dict[str, str | int]] = {}
149
+ if self.train:
150
+ splits[hfd.Split.TRAIN] = {
151
+ "name": "train",
152
+ "num_examples": NUM_TRAIN
153
+ }
154
+ if self.test:
155
+ splits[hfd.Split.TEST] = {
156
+ "name": "test",
157
+ "num_examples": NUM_TEST
158
+ }
159
+ if self.infeasible:
160
+ splits[hfd.Split("infeasible")] = {
161
+ "name": "infeasible",
162
+ "num_examples": NUM_INFEASIBLE
163
+ }
164
+ return splits
165
+
166
+ @property
167
+ def urls(self):
168
+ urls: dict[str, None | str | list] = {
169
+ "case": None, "train": [], "test": [], "infeasible": [],
170
+ }
171
+
172
+ if self.casejson: urls["case"] = f"case.json" + self.gz_ext
173
+
174
+ split_names = []
175
+ if self.train: split_names.append("train")
176
+ if self.test: split_names.append("test")
177
+ if self.infeasible: split_names.append("infeasible")
178
+
179
+ for split in split_names:
180
+ if self.input: urls[split].append(f"{split}/input.h5" + self.gz_ext)
181
+ for formulation in self.formulations:
182
+ if self.primal: urls[split].append(f"{split}/{formulation}/primal.h5" + self.gz_ext)
183
+ if self.dual: urls[split].append(f"{split}/{formulation}/dual.h5" + self.gz_ext)
184
+ if self.meta: urls[split].append(f"{split}/{formulation}/meta.h5" + self.gz_ext)
185
+ return urls
186
+
187
+ # ┌────────────────────┐
188
+ # │ DatasetBuilder │
189
+ # └────────────────────┘
190
+
191
+ class PGLearnSmall89_pegase(hfd.ArrowBasedBuilder):
192
+ """DatasetBuilder for PGLearn-Small-89_pegase.
193
+ The main interface is `datasets.load_dataset` with `trust_remote_code=True`, e.g.
194
+
195
+ ```python
196
+ from datasets import load_dataset
197
+ ds = load_dataset("PGLearn/PGLearn-Small-89_pegase", trust_remote_code=True,
198
+ # modify the default configuration by passing kwargs
199
+ formulations=["DCOPF"],
200
+ dual=False,
201
+ meta=False,
202
+ )
203
+ ```
204
+ """
205
+
206
+ DEFAULT_WRITER_BATCH_SIZE = 10000
207
+ BUILDER_CONFIG_CLASS = PGLearnSmall89_pegaseConfig
208
+ DEFAULT_CONFIG_NAME=CASENAME
209
+ BUILDER_CONFIGS = [
210
+ PGLearnSmall89_pegaseConfig(
211
+ name=CASENAME, description=DEFAULT_CONFIG_DESCRIPTION.format(case=CASENAME),
212
+ formulations=list(FORMULATIONS_TO_FEATURES.keys()),
213
+ primal=True, dual=True, meta=True, input=True, casejson=True,
214
+ train=True, test=True, infeasible=False,
215
+ )
216
+ ]
217
+
218
+ def _info(self):
219
+ return hfd.DatasetInfo(
220
+ features=self.config.features, splits=self.config.splits,
221
+ description=DESCRIPTION + self.config.description,
222
+ homepage=URL, citation=CITATION,
223
+ )
224
+
225
+ def _split_generators(self, dl_manager: hfd.DownloadManager):
226
+ hfd.logging.get_logger().warning(USE_ML4OPF_WARNING)
227
+
228
+ filepaths = dl_manager.download_and_extract(self.config.urls)
229
+
230
+ splits: list[hfd.SplitGenerator] = []
231
+ if self.config.train:
232
+ splits.append(hfd.SplitGenerator(
233
+ name=hfd.Split.TRAIN,
234
+ gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["train"]), n_samples=NUM_TRAIN),
235
+ ))
236
+ if self.config.test:
237
+ splits.append(hfd.SplitGenerator(
238
+ name=hfd.Split.TEST,
239
+ gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["test"]), n_samples=NUM_TEST),
240
+ ))
241
+ if self.config.infeasible:
242
+ splits.append(hfd.SplitGenerator(
243
+ name=hfd.Split("infeasible"),
244
+ gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["infeasible"]), n_samples=NUM_INFEASIBLE),
245
+ ))
246
+ return splits
247
+
248
+ def _generate_tables(self, case_file: str | None, data_files: tuple[hfd.utils.track.tracked_str], n_samples: int):
249
+ case_data: str | None = json.dumps(json.load(open_maybe_gzip(case_file))) if case_file is not None else None
250
+
251
+ opened_files = [open_maybe_gzip(file) for file in data_files]
252
+ data = {'/'.join(Path(df.get_origin()).parts[-2:]).split('.')[0]: h5py.File(of) for of, df in zip(opened_files, data_files)}
253
+ for k in list(data.keys()):
254
+ if "/input" in k: data[k.split("/", 1)[1]] = data.pop(k)
255
+
256
+ batch_size = self._writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
257
+ for i in range(0, n_samples, batch_size):
258
+ effective_batch_size = min(batch_size, n_samples - i)
259
+
260
+ sample_data = {
261
+ f"{dk}/{k}":
262
+ hfd.features.features.numpy_to_pyarrow_listarray(v[i:i + effective_batch_size, ...])
263
+ for dk, d in data.items() for k, v in d.items() if f"{dk}/{k}" in self.config.features
264
+ }
265
+
266
+ if case_data is not None:
267
+ sample_data["case/json"] = pa.array([case_data] * effective_batch_size)
268
+
269
+ yield i, pa.Table.from_pydict(sample_data)
270
+
271
+ for f in opened_files:
272
+ f.close()
273
+
274
+ # ┌──────────────┐
275
+ # │ Features │
276
+ # └──────────────┘
277
+
278
+ FLOAT_TYPE = "float32"
279
+ INT_TYPE = "int64"
280
+ BOOL_TYPE = "bool"
281
+ STRING_TYPE = "string"
282
+
283
+ def case_features():
284
+ # FIXME: better way to share schema of case data -- need to treat jagged arrays
285
+ return {
286
+ "case/json": hfd.Value(STRING_TYPE),
287
+ }
288
+
289
+ META_FEATURES = {
290
+ "meta/seed": hfd.Value(dtype=INT_TYPE),
291
+ "meta/formulation": hfd.Value(dtype=STRING_TYPE),
292
+ "meta/primal_objective_value": hfd.Value(dtype=FLOAT_TYPE),
293
+ "meta/dual_objective_value": hfd.Value(dtype=FLOAT_TYPE),
294
+ "meta/primal_status": hfd.Value(dtype=STRING_TYPE),
295
+ "meta/dual_status": hfd.Value(dtype=STRING_TYPE),
296
+ "meta/termination_status": hfd.Value(dtype=STRING_TYPE),
297
+ "meta/build_time": hfd.Value(dtype=FLOAT_TYPE),
298
+ "meta/extract_time": hfd.Value(dtype=FLOAT_TYPE),
299
+ "meta/solve_time": hfd.Value(dtype=FLOAT_TYPE),
300
+ }
301
+
302
+ def input_features(sizes: CaseSizes):
303
+ return {
304
+ "input/pd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
305
+ "input/qd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
306
+ "input/gen_status": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=BOOL_TYPE)),
307
+ "input/branch_status": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=BOOL_TYPE)),
308
+ "input/seed": hfd.Value(dtype=INT_TYPE),
309
+ }
310
+
311
+ def acopf_primal_features(sizes: CaseSizes):
312
+ return {
313
+ "ACOPF/primal/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
314
+ "ACOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
315
+ "ACOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
316
+ "ACOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
317
+ "ACOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
318
+ "ACOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
319
+ "ACOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
320
+ "ACOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
321
+ }
322
+ def acopf_dual_features(sizes: CaseSizes):
323
+ return {
324
+ "ACOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
325
+ "ACOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
326
+ "ACOPF/dual/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
327
+ "ACOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
328
+ "ACOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
329
+ "ACOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
330
+ "ACOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
331
+ "ACOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
332
+ "ACOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
333
+ "ACOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
334
+ "ACOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
335
+ "ACOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
336
+ "ACOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
337
+ "ACOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
338
+ "ACOPF/dual/sm_fr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
339
+ "ACOPF/dual/sm_to": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
340
+ "ACOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
341
+ }
342
+ def dcopf_primal_features(sizes: CaseSizes):
343
+ return {
344
+ "DCOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
345
+ "DCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
346
+ "DCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
347
+ }
348
+ def dcopf_dual_features(sizes: CaseSizes):
349
+ return {
350
+ "DCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
351
+ "DCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
352
+ "DCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
353
+ "DCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
354
+ "DCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
355
+ "DCOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
356
+ }
357
+ def socopf_primal_features(sizes: CaseSizes):
358
+ return {
359
+ "SOCOPF/primal/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
360
+ "SOCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
361
+ "SOCOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
362
+ "SOCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
363
+ "SOCOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
364
+ "SOCOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
365
+ "SOCOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
366
+ "SOCOPF/primal/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
367
+ "SOCOPF/primal/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
368
+ }
369
+ def socopf_dual_features(sizes: CaseSizes):
370
+ return {
371
+ "SOCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
372
+ "SOCOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
373
+ "SOCOPF/dual/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
374
+ "SOCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
375
+ "SOCOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
376
+ "SOCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
377
+ "SOCOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
378
+ "SOCOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
379
+ "SOCOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
380
+ "SOCOPF/dual/jabr": hfd.Array2D(shape=(sizes.n_branch, 4), dtype=FLOAT_TYPE),
381
+ "SOCOPF/dual/sm_fr": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
382
+ "SOCOPF/dual/sm_to": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
383
+ "SOCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
384
+ "SOCOPF/dual/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
385
+ "SOCOPF/dual/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
386
+ "SOCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
387
+ "SOCOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
388
+ "SOCOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
389
+ "SOCOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
390
+ }
391
+
392
+ # ┌───────────────┐
393
+ # │ Utilities │
394
+ # └───────────────┘
395
+
396
+ def open_maybe_gzip(path):
397
+ return gzip.open(path, "rb") if path.endswith(".gz") else open(path, "rb")
README.md ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - energy
5
+ - optimization
6
+ - optimal_power_flow
7
+ - power_grid
8
+ pretty_name: PGLearn Optimal Power Flow (89_pegase)
9
+ task_categories:
10
+ - tabular-regression
11
+ dataset_info:
12
+ config_name: 89_pegase
13
+ features:
14
+ - name: case/json
15
+ dtype: string
16
+ - name: input/pd
17
+ sequence: float32
18
+ length: 35
19
+ - name: input/qd
20
+ sequence: float32
21
+ length: 35
22
+ - name: input/gen_status
23
+ sequence: bool
24
+ length: 12
25
+ - name: input/branch_status
26
+ sequence: bool
27
+ length: 210
28
+ - name: input/seed
29
+ dtype: int64
30
+ - name: ACOPF/primal/vm
31
+ sequence: float32
32
+ length: 89
33
+ - name: ACOPF/primal/va
34
+ sequence: float32
35
+ length: 89
36
+ - name: ACOPF/primal/pg
37
+ sequence: float32
38
+ length: 12
39
+ - name: ACOPF/primal/qg
40
+ sequence: float32
41
+ length: 12
42
+ - name: ACOPF/primal/pf
43
+ sequence: float32
44
+ length: 210
45
+ - name: ACOPF/primal/pt
46
+ sequence: float32
47
+ length: 210
48
+ - name: ACOPF/primal/qf
49
+ sequence: float32
50
+ length: 210
51
+ - name: ACOPF/primal/qt
52
+ sequence: float32
53
+ length: 210
54
+ - name: ACOPF/dual/kcl_p
55
+ sequence: float32
56
+ length: 89
57
+ - name: ACOPF/dual/kcl_q
58
+ sequence: float32
59
+ length: 89
60
+ - name: ACOPF/dual/vm
61
+ sequence: float32
62
+ length: 89
63
+ - name: ACOPF/dual/pg
64
+ sequence: float32
65
+ length: 12
66
+ - name: ACOPF/dual/qg
67
+ sequence: float32
68
+ length: 12
69
+ - name: ACOPF/dual/ohm_pf
70
+ sequence: float32
71
+ length: 210
72
+ - name: ACOPF/dual/ohm_pt
73
+ sequence: float32
74
+ length: 210
75
+ - name: ACOPF/dual/ohm_qf
76
+ sequence: float32
77
+ length: 210
78
+ - name: ACOPF/dual/ohm_qt
79
+ sequence: float32
80
+ length: 210
81
+ - name: ACOPF/dual/pf
82
+ sequence: float32
83
+ length: 210
84
+ - name: ACOPF/dual/pt
85
+ sequence: float32
86
+ length: 210
87
+ - name: ACOPF/dual/qf
88
+ sequence: float32
89
+ length: 210
90
+ - name: ACOPF/dual/qt
91
+ sequence: float32
92
+ length: 210
93
+ - name: ACOPF/dual/va_diff
94
+ sequence: float32
95
+ length: 210
96
+ - name: ACOPF/dual/sm_fr
97
+ sequence: float32
98
+ length: 210
99
+ - name: ACOPF/dual/sm_to
100
+ sequence: float32
101
+ length: 210
102
+ - name: ACOPF/dual/slack_bus
103
+ dtype: float32
104
+ - name: ACOPF/meta/seed
105
+ dtype: int64
106
+ - name: ACOPF/meta/formulation
107
+ dtype: string
108
+ - name: ACOPF/meta/primal_objective_value
109
+ dtype: float32
110
+ - name: ACOPF/meta/dual_objective_value
111
+ dtype: float32
112
+ - name: ACOPF/meta/primal_status
113
+ dtype: string
114
+ - name: ACOPF/meta/dual_status
115
+ dtype: string
116
+ - name: ACOPF/meta/termination_status
117
+ dtype: string
118
+ - name: ACOPF/meta/build_time
119
+ dtype: float32
120
+ - name: ACOPF/meta/extract_time
121
+ dtype: float32
122
+ - name: ACOPF/meta/solve_time
123
+ dtype: float32
124
+ - name: DCOPF/primal/va
125
+ sequence: float32
126
+ length: 89
127
+ - name: DCOPF/primal/pg
128
+ sequence: float32
129
+ length: 12
130
+ - name: DCOPF/primal/pf
131
+ sequence: float32
132
+ length: 210
133
+ - name: DCOPF/dual/kcl_p
134
+ sequence: float32
135
+ length: 89
136
+ - name: DCOPF/dual/pg
137
+ sequence: float32
138
+ length: 12
139
+ - name: DCOPF/dual/ohm_pf
140
+ sequence: float32
141
+ length: 210
142
+ - name: DCOPF/dual/pf
143
+ sequence: float32
144
+ length: 210
145
+ - name: DCOPF/dual/va_diff
146
+ sequence: float32
147
+ length: 210
148
+ - name: DCOPF/dual/slack_bus
149
+ dtype: float32
150
+ - name: DCOPF/meta/seed
151
+ dtype: int64
152
+ - name: DCOPF/meta/formulation
153
+ dtype: string
154
+ - name: DCOPF/meta/primal_objective_value
155
+ dtype: float32
156
+ - name: DCOPF/meta/dual_objective_value
157
+ dtype: float32
158
+ - name: DCOPF/meta/primal_status
159
+ dtype: string
160
+ - name: DCOPF/meta/dual_status
161
+ dtype: string
162
+ - name: DCOPF/meta/termination_status
163
+ dtype: string
164
+ - name: DCOPF/meta/build_time
165
+ dtype: float32
166
+ - name: DCOPF/meta/extract_time
167
+ dtype: float32
168
+ - name: DCOPF/meta/solve_time
169
+ dtype: float32
170
+ - name: SOCOPF/primal/w
171
+ sequence: float32
172
+ length: 89
173
+ - name: SOCOPF/primal/pg
174
+ sequence: float32
175
+ length: 12
176
+ - name: SOCOPF/primal/qg
177
+ sequence: float32
178
+ length: 12
179
+ - name: SOCOPF/primal/pf
180
+ sequence: float32
181
+ length: 210
182
+ - name: SOCOPF/primal/pt
183
+ sequence: float32
184
+ length: 210
185
+ - name: SOCOPF/primal/qf
186
+ sequence: float32
187
+ length: 210
188
+ - name: SOCOPF/primal/qt
189
+ sequence: float32
190
+ length: 210
191
+ - name: SOCOPF/primal/wr
192
+ sequence: float32
193
+ length: 210
194
+ - name: SOCOPF/primal/wi
195
+ sequence: float32
196
+ length: 210
197
+ - name: SOCOPF/dual/kcl_p
198
+ sequence: float32
199
+ length: 89
200
+ - name: SOCOPF/dual/kcl_q
201
+ sequence: float32
202
+ length: 89
203
+ - name: SOCOPF/dual/w
204
+ sequence: float32
205
+ length: 89
206
+ - name: SOCOPF/dual/pg
207
+ sequence: float32
208
+ length: 12
209
+ - name: SOCOPF/dual/qg
210
+ sequence: float32
211
+ length: 12
212
+ - name: SOCOPF/dual/ohm_pf
213
+ sequence: float32
214
+ length: 210
215
+ - name: SOCOPF/dual/ohm_pt
216
+ sequence: float32
217
+ length: 210
218
+ - name: SOCOPF/dual/ohm_qf
219
+ sequence: float32
220
+ length: 210
221
+ - name: SOCOPF/dual/ohm_qt
222
+ sequence: float32
223
+ length: 210
224
+ - name: SOCOPF/dual/jabr
225
+ dtype:
226
+ array2_d:
227
+ shape:
228
+ - 210
229
+ - 4
230
+ dtype: float32
231
+ - name: SOCOPF/dual/sm_fr
232
+ dtype:
233
+ array2_d:
234
+ shape:
235
+ - 210
236
+ - 3
237
+ dtype: float32
238
+ - name: SOCOPF/dual/sm_to
239
+ dtype:
240
+ array2_d:
241
+ shape:
242
+ - 210
243
+ - 3
244
+ dtype: float32
245
+ - name: SOCOPF/dual/va_diff
246
+ sequence: float32
247
+ length: 210
248
+ - name: SOCOPF/dual/wr
249
+ sequence: float32
250
+ length: 210
251
+ - name: SOCOPF/dual/wi
252
+ sequence: float32
253
+ length: 210
254
+ - name: SOCOPF/dual/pf
255
+ sequence: float32
256
+ length: 210
257
+ - name: SOCOPF/dual/pt
258
+ sequence: float32
259
+ length: 210
260
+ - name: SOCOPF/dual/qf
261
+ sequence: float32
262
+ length: 210
263
+ - name: SOCOPF/dual/qt
264
+ sequence: float32
265
+ length: 210
266
+ - name: SOCOPF/meta/seed
267
+ dtype: int64
268
+ - name: SOCOPF/meta/formulation
269
+ dtype: string
270
+ - name: SOCOPF/meta/primal_objective_value
271
+ dtype: float32
272
+ - name: SOCOPF/meta/dual_objective_value
273
+ dtype: float32
274
+ - name: SOCOPF/meta/primal_status
275
+ dtype: string
276
+ - name: SOCOPF/meta/dual_status
277
+ dtype: string
278
+ - name: SOCOPF/meta/termination_status
279
+ dtype: string
280
+ - name: SOCOPF/meta/build_time
281
+ dtype: float32
282
+ - name: SOCOPF/meta/extract_time
283
+ dtype: float32
284
+ - name: SOCOPF/meta/solve_time
285
+ dtype: float32
286
+ splits:
287
+ - name: train
288
+ num_bytes: 242326342786
289
+ num_examples: 704792
290
+ - name: test
291
+ num_bytes: 60581585697
292
+ num_examples: 176198
293
+ download_size: 30943378664
294
+ dataset_size: 302907928483
295
+ ---
case.json.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7198c54efe773653c34abe4313518f1bf85ec97fc5743e11f8235cfcf77e64a
3
+ size 109656
config.toml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Name of the reference PGLib case. Must be a valid PGLib case name.
2
+ pglib_case = "pglib_opf_case89_pegase"
3
+ floating_point_type = "Float32"
4
+
5
+ [sampler]
6
+ # data sampler options
7
+ [sampler.load]
8
+ noise_type = "ScaledUniform"
9
+ l = 0.6 # Lower bound of base load factor
10
+ u = 1.0 # Upper bound of base load factor
11
+ sigma = 0.20 # Relative (multiplicative) noise level.
12
+
13
+
14
+ [OPF]
15
+
16
+ [OPF.ACOPF]
17
+ type = "ACOPF"
18
+ solver.name = "Ipopt"
19
+ solver.attributes.tol = 1e-6
20
+ solver.attributes.linear_solver = "ma27"
21
+
22
+ [OPF.DCOPF]
23
+ # Formulation/solver options
24
+ type = "DCOPF"
25
+ solver.name = "HiGHS"
26
+
27
+ [OPF.SOCOPF]
28
+ type = "SOCOPF"
29
+ solver.name = "Clarabel"
30
+ # Tight tolerances
31
+ solver.attributes.tol_gap_abs = 1e-6
32
+ solver.attributes.tol_gap_rel = 1e-6
33
+ solver.attributes.tol_feas = 1e-6
34
+ solver.attributes.tol_infeas_rel = 1e-6
35
+ solver.attributes.tol_ktratio = 1e-6
36
+ # Reduced accuracy settings
37
+ solver.attributes.reduced_tol_gap_abs = 1e-6
38
+ solver.attributes.reduced_tol_gap_rel = 1e-6
39
+ solver.attributes.reduced_tol_feas = 1e-6
40
+ solver.attributes.reduced_tol_infeas_abs = 1e-6
41
+ solver.attributes.reduced_tol_infeas_rel = 1e-6
42
+ solver.attributes.reduced_tol_ktratio = 1e-6
infeasible/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9315626b439d0bd6c3a0e1a70a08674dbad909dd8dd7696a534d73178727eeaf
3
+ size 1159221440
infeasible/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b02d1c7334286d44a5e42fd0c000db6c3d9617b2f80b1c3c2dd2abd7693743bb
3
+ size 4115998
infeasible/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5ae4365915ce098d840ff810e05a4f72f75ce725a7da7ff7d6871f97af53132
3
+ size 456800247
infeasible/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d65eccf463ddb7ffdbc77287bc1a3ce51d3924a51480f82a45e5572f457e27c
3
+ size 8557562
infeasible/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e0f991370d042a83e13227e6a0e57f7fbc9b433c03304d1294b0bd6cc2730be
3
+ size 3313593
infeasible/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75197b1e0c87b8e8dc01ba409ade5fb7c04c5451207ff0c5d8065472ce1d8b93
3
+ size 10930864
infeasible/SOCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ec101df4996daaf77ff9babacbfd0a5e085f185ea157f17b5fc5acdc660b9ea
3
+ size 2110230394
infeasible/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f062a8375fef20a50a97c21ba33187db81761708ef091581533c18c72fe7976
3
+ size 3837588
infeasible/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cccb359d095f3bf99b23936aa43f657327e5d15b9deae0e086e574a09a00b7d1
3
+ size 51945166
infeasible/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19eeed98ff84f6dd14291e8634c593b46d60a1bc3ac08b6e589fd5320a74ac5a
3
+ size 30794460
test/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60fff4416db3a3bbc74295e2cae81bf989d19f33d6e1e099adf55cbb953cb55f
3
+ size 1477772026
test/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d1fe9dab36dd9dea6056b7a1113fdd78a9bf5d989d578868f3c77f9df320440f
3
+ size 5932054
test/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb9df973bc485e8174622e354a348c138a36fc248610a8b428b4d250c0a4077b
3
+ size 669938071
test/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85b7d7b492ad2e623a2de252c2dd063c723b4ecac5c958086ada578e7f773ed2
3
+ size 10260830
test/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13d2767483923825043fe263d32a2a1d6f8d6fd3c9e0e685a983e8a043b438c0
3
+ size 5728701
test/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:359f682c9979352141b9340baacf38e7473b1dd8598e7fba4f582c49a893f385
3
+ size 189842201
test/SOCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25a1525c37e346be7861b9d7539f7216a844ec0fbbb9da5eedbd0c9ff72cd631
3
+ size 2901491086
test/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d52f2d80f016f94a42200100a572cacdd58323207fb25d28680559c6ff0de22
3
+ size 5966333
test/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5bd2dc24cb60a2051d7589a49593682f2c430f9c6d6e3dbcfa175d338318f60
3
+ size 876099927
test/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:595fc873138448bf910955975bb43d7e7b4d00d2be86f19e4449317a75fa0ee4
3
+ size 45725305
train/ACOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:383ca7cd2334043b97dd481840c857703d28e8a7f235b34d92a72e8b47afd922
3
+ size 5910998436
train/ACOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd88139db205afe1d7da28e15fc2be10886319030159671faf93e420634729be
3
+ size 23663752
train/ACOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3aff623513c7c9a063a539e9c9f0fac7f084e7d59eaf542076792222c7698fb6
3
+ size 2679740981
train/DCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:864f3b5de9b7e65087a82dd06400cd0d3bfa2a875e976436335d1569baf22cae
3
+ size 40982747
train/DCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:876ea4595be151a3e140afb8f8829f99bf9518b61db24f1b3c37f0fc4d274c01
3
+ size 22835890
train/DCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91e58de30d8facdccd5971c17592d054b44a32209114c948746c2f1bc8113c32
3
+ size 759351082
train/SOCOPF/dual.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:741b70b1771c78fea6fb6c5072e5761fc43ce0c667b9ecb889e984f9b2bef14a
3
+ size 11605891425
train/SOCOPF/meta.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96a2fbff2fa7d71aa861c0afa702bd6876e08c3ee497191fd8d23bf93e0c0a6a
3
+ size 23796231
train/SOCOPF/primal.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d8378ee17b8af37c2334a4b1a0628fa11802ef9554da6d9fa3e3f32f1725593
3
+ size 3504373882
train/input.h5.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89baaf18cd9eaae7e1192f4920e4cc753ecb1d11d297090ce4a87973b51467a9
3
+ size 182878048