|
|
import os |
|
|
import sys |
|
|
import argparse |
|
|
import math |
|
|
|
|
|
sys.path.append( |
|
|
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) |
|
|
) |
|
|
|
|
|
from megatron.core.datasets.indexed_dataset import ( |
|
|
IndexedDataset, |
|
|
IndexedDatasetBuilder, |
|
|
get_bin_path, |
|
|
get_idx_path, |
|
|
) |
|
|
|
|
|
|
|
|
def get_args(): |
|
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
group = parser.add_argument_group(title="input data") |
|
|
group.add_argument( |
|
|
"--input-prefix", |
|
|
type=str, |
|
|
required=True, |
|
|
help="Path to binary input file without suffix", |
|
|
) |
|
|
|
|
|
group = parser.add_argument_group(title="output data") |
|
|
group.add_argument( |
|
|
"--output-dir", |
|
|
type=str, |
|
|
required=True, |
|
|
help="Directory to output split files", |
|
|
) |
|
|
group.add_argument( |
|
|
"--output-prefix", |
|
|
type=str, |
|
|
default="split", |
|
|
help="Prefix for output files (default: split)", |
|
|
) |
|
|
|
|
|
group = parser.add_argument_group(title="split options") |
|
|
group.add_argument( |
|
|
"--num-splits", |
|
|
type=int, |
|
|
default=None, |
|
|
help="Number of splits to create. If not provided, will be determined by max-split-size-gb", |
|
|
) |
|
|
group.add_argument( |
|
|
"--max-split-size-gb", |
|
|
type=float, |
|
|
default=40.0, |
|
|
help="Maximum size of each split in GB (default: 40.0)", |
|
|
) |
|
|
group.add_argument( |
|
|
"--split-by-documents", |
|
|
action="store_true", |
|
|
help="Split by documents instead of sequences (default: split by sequences)", |
|
|
) |
|
|
|
|
|
group = parser.add_argument_group(title="miscellaneous") |
|
|
group.add_argument( |
|
|
"--multimodal", |
|
|
action="store_true", |
|
|
help="Whether the dataset is assumed to be multimodal" |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
bin_path = get_bin_path(args.input_prefix) |
|
|
idx_path = get_idx_path(args.input_prefix) |
|
|
assert os.path.isfile(bin_path), f"ERROR: {bin_path} does not exist" |
|
|
assert os.path.isfile(idx_path), f"ERROR: {idx_path} does not exist" |
|
|
|
|
|
|
|
|
assert os.path.isdir(args.output_dir), f"ERROR: {args.output_dir} is not a directory or does not exist" |
|
|
|
|
|
return args |
|
|
|
|
|
|
|
|
def split_by_sequences(dataset, output_dir, output_prefix, multimodal, max_split_size_bytes, num_splits=None): |
|
|
"""Split dataset by sequences, respecting max_split_size_bytes.""" |
|
|
total_sequences = len(dataset) |
|
|
if total_sequences == 0: |
|
|
print("Warning: No sequences found in dataset") |
|
|
return |
|
|
|
|
|
print(f"Total sequences: {total_sequences}") |
|
|
|
|
|
split_idx = 0 |
|
|
start_seq_idx = 0 |
|
|
|
|
|
while start_seq_idx < total_sequences: |
|
|
print(f"Creating split {split_idx + 1}...") |
|
|
|
|
|
|
|
|
split_prefix = os.path.join(output_dir, f"{output_prefix}_{split_idx:03d}") |
|
|
bin_path = get_bin_path(split_prefix) |
|
|
idx_path = get_idx_path(split_prefix) |
|
|
|
|
|
|
|
|
builder = IndexedDatasetBuilder(bin_path, dtype=dataset.index.dtype, multimodal=multimodal) |
|
|
|
|
|
current_split_size = 0 |
|
|
sequences_in_split = 0 |
|
|
|
|
|
|
|
|
if num_splits is not None: |
|
|
sequences_per_split = math.ceil(total_sequences / num_splits) |
|
|
end_seq_idx_target = min(start_seq_idx + sequences_per_split, total_sequences) |
|
|
else: |
|
|
end_seq_idx_target = total_sequences |
|
|
|
|
|
for seq_idx in range(start_seq_idx, end_seq_idx_target): |
|
|
sequence_pointer, sequence_length, sequence_mode = dataset.index[seq_idx] |
|
|
sequence_size = sequence_length * dataset.index.dtype_size |
|
|
|
|
|
if sequences_in_split > 0 and current_split_size + sequence_size > max_split_size_bytes: |
|
|
break |
|
|
|
|
|
sequence = dataset.bin_reader.read( |
|
|
dtype=dataset.index.dtype, count=sequence_length, offset=sequence_pointer |
|
|
) |
|
|
|
|
|
import torch |
|
|
tensor = torch.from_numpy(sequence.copy()) |
|
|
mode = sequence_mode if multimodal else 0 |
|
|
builder.add_item(tensor, mode) |
|
|
|
|
|
current_split_size += sequence_size |
|
|
sequences_in_split += 1 |
|
|
|
|
|
|
|
|
builder.finalize(idx_path) |
|
|
end_seq_idx = start_seq_idx + sequences_in_split |
|
|
print(f"Split {split_idx + 1} completed: sequences {start_seq_idx} to {end_seq_idx - 1} ({sequences_in_split} sequences), size: {current_split_size / (1024**3):.2f} GB") |
|
|
|
|
|
start_seq_idx = end_seq_idx |
|
|
split_idx += 1 |
|
|
|
|
|
|
|
|
def split_by_documents(dataset, output_dir, output_prefix, multimodal, max_split_size_bytes, num_splits=None): |
|
|
"""Split dataset by documents, respecting max_split_size_bytes.""" |
|
|
document_indices = dataset.document_indices |
|
|
total_documents = len(document_indices) - 1 |
|
|
|
|
|
if total_documents == 0: |
|
|
print("Warning: No documents found in dataset") |
|
|
return |
|
|
|
|
|
print(f"Total documents: {total_documents}") |
|
|
|
|
|
split_idx = 0 |
|
|
start_doc_idx = 0 |
|
|
|
|
|
while start_doc_idx < total_documents: |
|
|
print(f"Creating split {split_idx + 1}...") |
|
|
|
|
|
split_prefix = os.path.join(output_dir, f"{output_prefix}_{split_idx:03d}") |
|
|
bin_path = get_bin_path(split_prefix) |
|
|
idx_path = get_idx_path(split_prefix) |
|
|
|
|
|
builder = IndexedDatasetBuilder(bin_path, dtype=dataset.index.dtype, multimodal=multimodal) |
|
|
|
|
|
current_split_size = 0 |
|
|
documents_in_split = 0 |
|
|
|
|
|
if num_splits is not None: |
|
|
docs_per_split = math.ceil(total_documents / num_splits) |
|
|
end_doc_idx_target = min(start_doc_idx + docs_per_split, total_documents) |
|
|
else: |
|
|
end_doc_idx_target = total_documents |
|
|
|
|
|
for doc_idx in range(start_doc_idx, end_doc_idx_target): |
|
|
doc_start_seq = document_indices[doc_idx] |
|
|
doc_end_seq = document_indices[doc_idx + 1] |
|
|
|
|
|
doc_size = 0 |
|
|
for seq_idx in range(doc_start_seq, doc_end_seq): |
|
|
_, sequence_length, _ = dataset.index[seq_idx] |
|
|
doc_size += sequence_length * dataset.index.dtype_size |
|
|
|
|
|
if documents_in_split > 0 and current_split_size + doc_size > max_split_size_bytes: |
|
|
break |
|
|
|
|
|
for seq_idx in range(doc_start_seq, doc_end_seq): |
|
|
sequence_pointer, sequence_length, sequence_mode = dataset.index[seq_idx] |
|
|
sequence = dataset.bin_reader.read( |
|
|
dtype=dataset.index.dtype, count=sequence_length, offset=sequence_pointer |
|
|
) |
|
|
|
|
|
import torch |
|
|
tensor = torch.from_numpy(sequence.copy()) |
|
|
mode = sequence_mode if multimodal else 0 |
|
|
builder.add_item(tensor, mode) |
|
|
|
|
|
builder.end_document() |
|
|
current_split_size += doc_size |
|
|
documents_in_split += 1 |
|
|
|
|
|
builder.finalize(idx_path) |
|
|
end_doc_idx = start_doc_idx + documents_in_split |
|
|
print(f"Split {split_idx + 1} completed: documents {start_doc_idx} to {end_doc_idx - 1} ({documents_in_split} documents), size: {current_split_size / (1024**3):.2f} GB") |
|
|
|
|
|
start_doc_idx = end_doc_idx |
|
|
split_idx += 1 |
|
|
|
|
|
|
|
|
def main(): |
|
|
args = get_args() |
|
|
|
|
|
print(f"Loading dataset from {args.input_prefix}") |
|
|
dataset = IndexedDataset(args.input_prefix, multimodal=args.multimodal) |
|
|
|
|
|
print(f"Dataset loaded: {len(dataset)} sequences") |
|
|
if args.multimodal: |
|
|
print(f"Multimodal dataset with {len(dataset.document_indices) - 1} documents") |
|
|
else: |
|
|
print(f"Standard dataset with {len(dataset.document_indices) - 1} documents") |
|
|
|
|
|
max_split_size_bytes = args.max_split_size_gb * 1024 * 1024 * 1024 |
|
|
|
|
|
|
|
|
if args.num_splits is not None: |
|
|
input_bin_path = get_bin_path(args.input_prefix) |
|
|
total_size_bytes = os.path.getsize(input_bin_path) |
|
|
size_per_split = total_size_bytes / args.num_splits |
|
|
if size_per_split > max_split_size_bytes: |
|
|
print(f"Warning: With {args.num_splits} splits, the average split size would be {size_per_split / (1024**3):.2f} GB, which is larger than the specified max of {args.max_split_size_gb} GB.") |
|
|
print("The script will create more splits if necessary to respect the size limit.") |
|
|
|
|
|
if args.split_by_documents: |
|
|
split_by_documents(dataset, args.output_dir, args.output_prefix, args.multimodal, max_split_size_bytes, args.num_splits) |
|
|
else: |
|
|
split_by_sequences(dataset, args.output_dir, args.output_prefix, args.multimodal, max_split_size_bytes, args.num_splits) |
|
|
|
|
|
print("Dataset splitting completed!") |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
main() |
|
|
|