Datasets:

You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Optical Music Recognition of Jazz Lead Sheets

Code arXiv

🖥️ Slides | 🎶 Poster | Available soon

Dataset

How to use

Check the following code:

import ast

from datasets import load_dataset
from PIL import ImageDraw


DATASET_NAME = "PRAIG/JAZZMUS"

ds = load_dataset(DATASET_NAME)

image = ds["train"][0]["image"]

# list of systems, with bounding boxes and encoding
systems = ast.literal_eval(ds["train"][0]["annotation"])["systems"]

# full page encodings
encoding = ast.literal_eval(ds["train"][0]["annotation"])["encodings"]
mxml_encoding = encoding["musicxml"]
kern_encoding = encoding["**kern"]

# draw the bounding boxes on the image
ImageDraw = ImageDraw.Draw(image)

for idx, s in enumerate(systems):
    print(f"System {idx + 1}:")
    print(f"\t{s['bounding_box']}")
    print(f"\t{repr(s['**kern'])}\n")
    bbox = s["bounding_box"]
    ImageDraw.rectangle(
        [bbox["fromX"], bbox["fromY"], bbox["toX"], bbox["toY"]],
        outline="red",
        width=2,
    )

image.save("image_with_bboxes.pdf", "PDF")

Other dataset versions

🤗 JAZZMUS dataset collection

Citation

We are waiting for the official ISMIR 2025 proceedings.

@misc{martinezsevilla2025omrjazz,
      title={Optical Music Recognition of Jazz Lead Sheets}, 
      author={Juan Carlos Martinez-Sevilla and Francesco Foscarin and Patricia Garcia-Iasci and David Rizo and Jorge Calvo-Zaragoza and Gerhard Widmer},
      year={2025},
      eprint={2509.05329},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2509.05329}, 
}
Downloads last month
12

Collection including PRAIG/JAZZMUS