JAZZMUS 🎷
Collection
Datasets used in OPTICAL MUSIC RECOGNITION OF JAZZ LEAD SHEETS - ISMIR 2025 - Daejeon, Korea
•
3 items
•
Updated
•
1
Check the following code:
import ast
from datasets import load_dataset
from PIL import ImageDraw
DATASET_NAME = "PRAIG/JAZZMUS"
ds = load_dataset(DATASET_NAME)
image = ds["train"][0]["image"]
# list of systems, with bounding boxes and encoding
systems = ast.literal_eval(ds["train"][0]["annotation"])["systems"]
# full page encodings
encoding = ast.literal_eval(ds["train"][0]["annotation"])["encodings"]
mxml_encoding = encoding["musicxml"]
kern_encoding = encoding["**kern"]
# draw the bounding boxes on the image
ImageDraw = ImageDraw.Draw(image)
for idx, s in enumerate(systems):
print(f"System {idx + 1}:")
print(f"\t{s['bounding_box']}")
print(f"\t{repr(s['**kern'])}\n")
bbox = s["bounding_box"]
ImageDraw.rectangle(
[bbox["fromX"], bbox["fromY"], bbox["toX"], bbox["toY"]],
outline="red",
width=2,
)
image.save("image_with_bboxes.pdf", "PDF")
We are waiting for the official ISMIR 2025 proceedings.
@misc{martinezsevilla2025omrjazz,
title={Optical Music Recognition of Jazz Lead Sheets},
author={Juan Carlos Martinez-Sevilla and Francesco Foscarin and Patricia Garcia-Iasci and David Rizo and Jorge Calvo-Zaragoza and Gerhard Widmer},
year={2025},
eprint={2509.05329},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2509.05329},
}