hexsha
stringlengths 40
40
| size
int64 4
1.02M
| ext
stringclasses 8
values | lang
stringclasses 1
value | max_stars_repo_path
stringlengths 4
209
| max_stars_repo_name
stringlengths 5
121
| max_stars_repo_head_hexsha
stringlengths 40
40
| max_stars_repo_licenses
sequencelengths 1
10
| max_stars_count
int64 1
191k
⌀ | max_stars_repo_stars_event_min_datetime
stringlengths 24
24
⌀ | max_stars_repo_stars_event_max_datetime
stringlengths 24
24
⌀ | max_issues_repo_path
stringlengths 4
209
| max_issues_repo_name
stringlengths 5
121
| max_issues_repo_head_hexsha
stringlengths 40
40
| max_issues_repo_licenses
sequencelengths 1
10
| max_issues_count
int64 1
67k
⌀ | max_issues_repo_issues_event_min_datetime
stringlengths 24
24
⌀ | max_issues_repo_issues_event_max_datetime
stringlengths 24
24
⌀ | max_forks_repo_path
stringlengths 4
209
| max_forks_repo_name
stringlengths 5
121
| max_forks_repo_head_hexsha
stringlengths 40
40
| max_forks_repo_licenses
sequencelengths 1
10
| max_forks_count
int64 1
105k
⌀ | max_forks_repo_forks_event_min_datetime
stringlengths 24
24
⌀ | max_forks_repo_forks_event_max_datetime
stringlengths 24
24
⌀ | content
stringlengths 4
1.02M
| avg_line_length
float64 1.07
66.1k
| max_line_length
int64 4
266k
| alphanum_fraction
float64 0.01
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
283187b1acdcf513705c7326dc53d32846d75468 | 1,054 | py | Python | image.py | harshkothari410/snn-image-segmentation | 18fb28e8b2fee3d7583f6e62fd512ba90863c0ee | [
"MIT"
] | 7 | 2016-04-17T21:11:41.000Z | 2021-06-25T09:40:40.000Z | image.py | Arthas1121/snn-image-segmentation | 18fb28e8b2fee3d7583f6e62fd512ba90863c0ee | [
"MIT"
] | null | null | null | image.py | Arthas1121/snn-image-segmentation | 18fb28e8b2fee3d7583f6e62fd512ba90863c0ee | [
"MIT"
] | 6 | 2016-04-17T19:14:41.000Z | 2022-03-09T21:03:12.000Z | from PIL import Image
def imageread(filename):
file = Image.open(filename)
pixel_values = list(file.getdata())
# Compute H and W
w, h = file.size
# compute pixel matrix
pixel_mat = [[0 for x in xrange(w)] for x in xrange(h)]
count = 0
for x in xrange(h):
for y in xrange(w):
# print type(pixel_values[count])
try:
if len( pixel_values[count] ) > 1:
pixel_mat[x][y] = pixel_values[count][0] #check whether is
else:
pixel_mat[x][y] = pixel_values[count]
count+=1
except:
pixel_mat[x][y] = pixel_values[count]
count+=1
return pixel_mat, w, h
def imagewrite(data, w, h):
final_ans = []
count = 0
for x in xrange(h):
for y in xrange(w):
final_ans.append( data[x][y] )
count+=1
im = Image.new('1', (w,h))
# print im
im.putdata(final_ans)
im.show()
def imagesave(data, w, h, name):
final_ans = []
count = 0
for x in xrange(h):
for y in xrange(w):
final_ans.append( data[x][y] )
count+=1
im = Image.new('1', (w,h))
# print im
im.putdata(final_ans)
im.save(name+'.jpg') | 19.163636 | 64 | 0.622391 |
862c998692f1850567159b1010a13f98027238a1 | 2,774 | py | Python | nipype/interfaces/camino/tests/test_auto_TrackPICo.py | moloney/nipype | a7a9c85c79cb1412ba03406074f83200447ef50b | [
"Apache-2.0"
] | 7 | 2017-02-17T08:54:26.000Z | 2022-03-10T20:57:23.000Z | nipype/interfaces/camino/tests/test_auto_TrackPICo.py | moloney/nipype | a7a9c85c79cb1412ba03406074f83200447ef50b | [
"Apache-2.0"
] | 1 | 2016-04-25T15:07:09.000Z | 2016-04-25T15:07:09.000Z | nipype/interfaces/camino/tests/test_auto_TrackPICo.py | moloney/nipype | a7a9c85c79cb1412ba03406074f83200447ef50b | [
"Apache-2.0"
] | 2 | 2017-09-23T16:22:00.000Z | 2019-08-01T14:18:52.000Z | # AUTO-GENERATED by tools/checkspecs.py - DO NOT EDIT
from __future__ import unicode_literals
from ..dti import TrackPICo
def test_TrackPICo_inputs():
input_map = dict(
anisfile=dict(argstr='-anisfile %s', ),
anisthresh=dict(argstr='-anisthresh %f', ),
args=dict(argstr='%s', ),
curveinterval=dict(
argstr='-curveinterval %f',
requires=['curvethresh'],
),
curvethresh=dict(argstr='-curvethresh %f', ),
data_dims=dict(
argstr='-datadims %s',
units='voxels',
),
environ=dict(
nohash=True,
usedefault=True,
),
gzip=dict(argstr='-gzip', ),
ignore_exception=dict(
deprecated='1.0.0',
nohash=True,
usedefault=True,
),
in_file=dict(
argstr='-inputfile %s',
position=1,
),
inputdatatype=dict(argstr='-inputdatatype %s', ),
inputmodel=dict(
argstr='-inputmodel %s',
usedefault=True,
),
interpolator=dict(argstr='-interpolator %s', ),
ipthresh=dict(argstr='-ipthresh %f', ),
iterations=dict(
argstr='-iterations %d',
units='NA',
),
maxcomponents=dict(
argstr='-maxcomponents %d',
units='NA',
),
numpds=dict(
argstr='-numpds %d',
units='NA',
),
out_file=dict(
argstr='-outputfile %s',
genfile=True,
position=-1,
),
output_root=dict(
argstr='-outputroot %s',
position=-1,
),
outputtracts=dict(argstr='-outputtracts %s', ),
pdf=dict(argstr='-pdf %s', ),
seed_file=dict(
argstr='-seedfile %s',
position=2,
),
stepsize=dict(
argstr='-stepsize %f',
requires=['tracker'],
),
terminal_output=dict(
deprecated='1.0.0',
nohash=True,
),
tracker=dict(
argstr='-tracker %s',
usedefault=True,
),
voxel_dims=dict(
argstr='-voxeldims %s',
units='mm',
),
)
inputs = TrackPICo.input_spec()
for key, metadata in list(input_map.items()):
for metakey, value in list(metadata.items()):
assert getattr(inputs.traits()[key], metakey) == value
def test_TrackPICo_outputs():
output_map = dict(tracked=dict(), )
outputs = TrackPICo.output_spec()
for key, metadata in list(output_map.items()):
for metakey, value in list(metadata.items()):
assert getattr(outputs.traits()[key], metakey) == value
| 28.597938 | 67 | 0.503965 |
0e167608dba640e8e33ffb8e133f56b11ba0dc0a | 10,649 | py | Python | apps/project/business/board.py | rainydaygit/testtcloudserver | 8037603efe4502726a4d794fb1fc0a3f3cc80137 | [
"MIT"
] | 349 | 2020-08-04T10:21:01.000Z | 2022-03-23T08:31:29.000Z | apps/project/business/board.py | rainydaygit/testtcloudserver | 8037603efe4502726a4d794fb1fc0a3f3cc80137 | [
"MIT"
] | 2 | 2021-01-07T06:17:05.000Z | 2021-04-01T06:01:30.000Z | apps/project/business/board.py | rainydaygit/testtcloudserver | 8037603efe4502726a4d794fb1fc0a3f3cc80137 | [
"MIT"
] | 70 | 2020-08-24T06:46:14.000Z | 2022-03-25T13:23:27.000Z | import json
import requests
from flask import request, g, current_app
from sqlalchemy import desc, func
from sqlalchemy.orm import aliased
from apps.auth.models.users import User
from apps.project.models.issue import Issue
from apps.project.models.modules import Module
from apps.project.models.tasks import Task, TaskCase
from apps.project.models.version import Version
from apps.public.models.public import Config
from library.api.transfer import transfer2json
class BoardBusiness(object):
@classmethod
@transfer2json(
'?id|!name|!description|!tmethod|!ttype|!status|!start_time|!end_time|!priority|!version_id|!version_name'
'|!creator_id|!creator_name|!executor_id|!executor_name|!project_id',
ispagination=True)
def task_query(cls, projectid, userid, status, iscreator, page_size, page_index, title):
# 0:创建,1:任务已删除,2:任务已完成
user_creator = aliased(User)
user_executor = aliased(User)
ret = Task.query.outerjoin(
user_creator, user_creator.id == Task.creator).outerjoin(
user_executor, user_executor.id == Task.executor).outerjoin(
Version, Version.id == Task.version).add_columns(
Task.id.label('id'),
Task.name.label('name'),
Task.description.label('description'),
Task.tmethod.label('tmethod'),
Task.ttype.label('ttype'),
Task.status.label('status'),
func.date_format(Task.start_time, "%Y-%m-%d").label('start_time'),
func.date_format(Task.end_time, "%Y-%m-%d").label('end_time'),
Task.priority.label('priority'),
Task.project_id.label('project_id'),
Version.id.label('version_id'),
Version.title.label('version_name'),
user_creator.id.label('creator_id'),
user_creator.nickname.label('creator_name'),
user_executor.id.label('executor_id'),
user_executor.nickname.label('executor_name'),
)
if projectid:
ret = ret.filter(Task.project_id == projectid)
if iscreator:
ret = ret.filter(Task.creator == userid)
else:
ret = ret.filter(Task.executor == userid)
if title not in ["", None]:
ret = ret.filter(Task.name.like(f'%{title}%'))
ret = ret.filter(Task.status.in_(status))
result = ret.order_by(desc(Task.id)
).limit(int(page_size)).offset(int(page_index - 1) * int(page_size)).all()
count = ret.count()
return result, count
@classmethod
@transfer2json(
'?taskcaseid|!task_id|!executor_id|!executor_name|!handler_id|!handler_name|!exe_way|!cnumber|!ctype|!title|'
'!description|!precondition|!step_result|!is_auto|!status|!comment|!module_id|!module_name|!project_id',
ispagination=True
)
def task_case_query(cls, projectid, userid, status, iscreator, page_size, page_index, title):
# 0:case创建,1:case已删除,2:跳过,3:case执行通过,4:case执行不通过
user_executor = aliased(User)
user_handler = aliased(User)
ret = TaskCase.query.outerjoin(
Module, TaskCase.module_id == Module.id).outerjoin(
user_executor, user_executor.id == TaskCase.executor).outerjoin(
user_handler, user_handler.id == TaskCase.handler).add_columns(
TaskCase.id.label('taskcaseid'),
TaskCase.task_id.label('task_id'),
TaskCase.exe_way.label('exe_way'),
TaskCase.cnumber.label('cnumber'),
TaskCase.ctype.label('ctype'),
TaskCase.title.label('title'),
TaskCase.description.label('description'),
TaskCase.precondition.label('precondition'),
TaskCase.step_result.label('step_result'),
TaskCase.is_auto.label('is_auto'),
TaskCase.status.label('status'),
TaskCase.comment.label('comment'),
TaskCase.project_id.label('project_id'),
Module.id.label('module_id'),
Module.name.label('module_name'),
user_executor.id.label('executor_id'),
user_executor.nickname.label('executor_name'),
user_handler.id.label('handler_id'),
user_handler.nickname.label('handler_name'),
)
if projectid:
ret = ret.filter(TaskCase.project_id == projectid)
if iscreator is 1:
ret = ret.filter(TaskCase.handler == userid)
else:
ret = ret.filter(TaskCase.executor == userid)
if title not in ["", None]:
ret = ret.filter(TaskCase.title.like(f'%{title}%'))
ret = ret.filter(TaskCase.status.in_(status))
result = ret.order_by(desc(TaskCase.id)
).limit(int(page_size)).offset(int(page_index - 1) * int(page_size)).all()
count = ret.count()
return result, count
@classmethod
@transfer2json('?id|!issue_number|!title|!handle_status|!description|!chance|!level|!priority|!stage'
'|!version_id|!version_name|!creator_id|!creator_name|!handler_id|!handler_name|!project_id',
ispagination=True
)
def issue_query(cls, projectid, userid, status, iscreator, page_size, page_index, title):
# 处理状态 {"1": "待办", "2": "处理中", "3": "测试中", "4": "已关闭", "5": "已拒绝", "6": "延时处理"}
user_creator = aliased(User)
user_handler = aliased(User)
ret = Issue.query.outerjoin(
user_creator, user_creator.id == Issue.creator).outerjoin(
user_handler, user_handler.id == Issue.handler).outerjoin(
Version, Version.id == Issue.version).add_columns(
Issue.id.label('id'),
Issue.issue_number.label('issue_number'),
Issue.title.label('title'),
Issue.handle_status.label('handle_status'),
Issue.description.label('description'),
Issue.chance.label('chance'),
Issue.level.label('level'),
Issue.priority.label('priority'),
Issue.stage.label('stage'),
Issue.project_id.label('project_id'),
Version.id.label('version_id'),
Version.title.label('version_name'),
user_creator.id.label('creator_id'),
user_creator.nickname.label('creator_name'),
user_handler.id.label('handler_id'),
user_handler.nickname.label('handler_name'),
)
if projectid:
ret = ret.filter(Issue.project_id == projectid)
if iscreator:
ret = ret.filter(Issue.creator == userid)
else:
ret = ret.filter(Issue.handler == userid)
if title not in ["", None]:
ret = ret.filter(Issue.title.like(f'%{title}%'))
ret = ret.filter(Issue.handle_status.in_(status), Issue.status == Issue.ACTIVE)
result = ret.order_by(desc(Issue.id)
).limit(int(page_size)).offset(int(page_index - 1) * int(page_size)).all()
count = ret.count()
return result, count
@classmethod
def board_config(cls):
user_id = g.userid if g.userid else None
board_config = Config.query.add_columns(Config.content.label('content')).filter(Config.module == 'board',
Config.module_type == 1).first()
board_config = json.loads(board_config.content)
current_app.logger.info('board_config:' + str(board_config))
return user_id, board_config
@classmethod
def user_create(cls, page_size, page_index, r_type, title):
project_id = request.args.get('projectid')
user_id, board_config = cls.board_config()
ret = None
count = 0
if r_type == "task":
ret, count = cls.task_query(project_id, user_id, board_config['create']['task'], 1, page_size,
page_index, title)
# task_case_ret = cls.task_case_query(projectid, user_id, board_config['create']['task_case'], 1)
if r_type == "issue":
ret, count = cls.issue_query(project_id, user_id, board_config['create']['issue'], 1, page_size,
page_index, title)
return ret, count
@classmethod
def user_unfinish(cls, page_size, page_index, r_type, title):
project_id = request.args.get('projectid')
user_id, board_config = cls.board_config()
ret = None
count = 0
if r_type == "task":
ret, count = cls.task_query(project_id, user_id, board_config['unfinish']['task'], 0, page_size, page_index,
title)
if r_type == "task_case":
ret, count = cls.task_case_query(project_id, user_id, board_config['unfinish']['task_case'],
1, page_size, page_index, title)
if r_type == "issue":
ret, count = cls.issue_query(project_id, user_id, board_config['unfinish']['issue'], 0, page_size,
page_index, title)
return ret, count
@classmethod
def user_finish(cls, page_size, page_index, r_type, title):
project_id = request.args.get('projectid')
user_id, board_config = cls.board_config()
ret = None
count = 0
if r_type == "task":
ret, count = cls.task_query(project_id, user_id, board_config['finish']['task'], 0, page_size, page_index,
title)
if r_type == "task_case":
ret, count = cls.task_case_query(project_id, user_id, board_config['finish']['task_case'], 1,
page_size, page_index, title)
if r_type == "issue":
ret, count = cls.issue_query(project_id, user_id, board_config['finish']['issue'], 0, page_size,
page_index, title)
return ret, count
@classmethod
def stf_devices(cls):
stf_devices = Config.query.add_columns(Config.content.label('content')).filter(
Config.module == 'stf',
Config.module_type == 1).first()
stf_devices = json.loads(stf_devices.content)
current_app.logger.info(json.dumps(stf_devices, ensure_ascii=False))
url = stf_devices['URL']
headers = stf_devices['headers']
ret = requests.get(url, headers=headers)
ret = json.loads(ret.content)
# logger.info(json.dumps(ret, ensure_ascii=False))
return ret | 46.70614 | 120 | 0.594892 |
83d30c47ebde1323539e62d03f67b271652cf3be | 4,899 | py | Python | integration_testing/run_travis_tests.py | Glitchfix/mindsdb | e6c33d7085898c223030334962596ae8afa3fbd5 | [
"MIT"
] | null | null | null | integration_testing/run_travis_tests.py | Glitchfix/mindsdb | e6c33d7085898c223030334962596ae8afa3fbd5 | [
"MIT"
] | null | null | null | integration_testing/run_travis_tests.py | Glitchfix/mindsdb | e6c33d7085898c223030334962596ae8afa3fbd5 | [
"MIT"
] | null | null | null | from data_generators import *
import traceback
import sys
import os
import itertools
import logging
from colorlog import ColoredFormatter
import time
import mindsdb
from mindsdb import CONST
#@TODO: Currently we use this isntead of randomly generated data since randomly generated data is not reliable enough
# We tell mindsDB what we want to learn and from what data
mdb = mindsdb.Predictor(name='home_rentals_price')
mdb.learn(
to_predict='rental_price', # the column we want to learn to predict given all the data in the file
from_data="https://s3.eu-west-2.amazonaws.com/mindsdb-example-data/home_rentals.csv"
# the path to the file where we can learn from, (note: can be url)
)
prediction = mdb.predict(when={'sqft':300})
print(prediction[0])
amd = mdb.get_model_data('home_rentals_price')
'''
types_that_work = ['int','float','date','datetime','timestamp','ascii']
logger = None
def setup_testing_logger():
global logger
formatter = ColoredFormatter(
"%(log_color)s%(message)s",
datefmt=None,
reset=True,
log_colors={
'DEBUG': 'black,bg_white',
'INFO': 'blue,bg_white',
'WARNING': 'orange,bg_white',
'ERROR': 'red,bg_white',
'CRITICAL': 'red,bg_white',
}
)
logger = logging.getLogger('mindsdb_integration_testing')
logger.handlers = []
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)
def run_tests():
logger.info('Starting one-label test')
separator = ','
train_file_name = 'train_data.csv'
test_file_name = 'test_data.csv'
data_len = 8000
# Create the full dataset
logger.debug(f'Creating one-labe test datasets and saving them to {train_file_name} and {test_file_name}, total dataset size will be {data_len} rows')
try:
features = generate_value_cols(types_that_work,data_len, separator)
labels = [generate_labels_2(features, separator)]
feature_headers = list(map(lambda col: col[0], features))
label_headers = list(map(lambda col: col[0], labels))
# Create the training dataset and save it to a file
columns_train = list(map(lambda col: col[1:int(len(col)*3/4)], features))
columns_train.extend(list(map(lambda col: col[1:int(len(col)*3/4)], labels)))
columns_to_file(columns_train, train_file_name, separator, headers=[*feature_headers,*label_headers])
# Create the testing dataset and save it to a file
columns_test = list(map(lambda col: col[int(len(col)*3/4):], features))
columns_to_file(columns_test, test_file_name, separator, headers=feature_headers)
logger.debug(f'Datasets generate and saved to files successfully')
except:
print(traceback.format_exc())
logger.error(f'Failed to generate datasets !')
exit(1)
# Train
mdb = None
try:
mdb = mindsdb.Predictor(name='test_one_label_prediction')
logger.debug(f'Succesfully create mindsdb Predictor')
except:
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
mdb.learn(from_data=train_file_name, to_predict=label_headers)
logger.info(f'--------------- Learning ran succesfully ---------------')
mdb.learn(from_data=train_file_name, to_predict=label_headers, rebuild_model=False)
logger.info(f'--------------- Additional learning ran succesfully ---------------')
except:
print(traceback.format_exc())
logger.error(f'Failed during the training !')
exit(1)
# Predict
try:
mdb = mindsdb.Predictor(name='test_one_label_prediction')
logger.debug(f'Succesfully create mindsdb Predictor')
except:
print(traceback.format_exc())
logger.error(f'Failed to create mindsdb Predictor')
exit(1)
try:
results = mdb.predict(when_data=test_file_name)
for row in results:
expect_columns = [label_headers[0] ,label_headers[0] + '_confidence']
for col in expect_columns:
if col not in row:
logger.error(f'Prediction failed to return expected column: {col}')
logger.debug('Got row: {}'.format(row))
exit(1)
logger.info(f'--------------- Predicting ran succesfully ---------------')
# Print statements are in for debugging, remove later, but keep the funcion calls to make sure the interface is working
models = mdb.get_models()
amd = mdb.get_model_data('test_one_label_prediction')
print(amd)
except:
print(traceback.format_exc())
logger.error(f'Failed whilst predicting')
exit(1)
logger.info('Travis CLI Tests ran succesfully !')
setup_testing_logger()
run_tests()
'''
| 33.554795 | 154 | 0.654419 |
7a220662c532f6177643a5bc0c91a4955cdccfc8 | 42,389 | py | Python | template_container_human/labels/slice_43.py | lkondratova/Brainplot | 3c8a88c1995dedeaa5cbd88ee71499c7cf9c571d | [
"MIT"
] | null | null | null | template_container_human/labels/slice_43.py | lkondratova/Brainplot | 3c8a88c1995dedeaa5cbd88ee71499c7cf9c571d | [
"MIT"
] | null | null | null | template_container_human/labels/slice_43.py | lkondratova/Brainplot | 3c8a88c1995dedeaa5cbd88ee71499c7cf9c571d | [
"MIT"
] | null | null | null | coordinates_E0E1E1 = ((124, 121),
(124, 122), (125, 119), (125, 124), (126, 97), (126, 118), (126, 121), (126, 122), (126, 125), (126, 144), (127, 84), (127, 97), (127, 98), (127, 117), (127, 119), (127, 120), (127, 121), (127, 122), (127, 123), (127, 126), (127, 142), (127, 143), (128, 84), (128, 86), (128, 96), (128, 99), (128, 110), (128, 112), (128, 113), (128, 114), (128, 115), (128, 118), (128, 119), (128, 120), (128, 121), (128, 122), (128, 123), (128, 124), (128, 127), (128, 133), (128, 141), (128, 142), (129, 85), (129, 96), (129, 99), (129, 109), (129, 117), (129, 118), (129, 119), (129, 120), (129, 121), (129, 122), (129, 123), (129, 124), (129, 125), (129, 128), (129, 131), (129, 133), (129, 141), (130, 87), (130, 95), (130, 97), (130, 98), (130, 100), (130, 109), (130, 111), (130, 112), (130, 113), (130, 114), (130, 115), (130, 116), (130, 117), (130, 118),
(130, 119), (130, 120), (130, 121), (130, 122), (130, 123), (130, 124), (130, 125), (130, 126), (130, 127), (130, 130), (130, 133), (130, 140), (130, 141), (131, 86), (131, 94), (131, 96), (131, 97), (131, 98), (131, 100), (131, 109), (131, 111), (131, 112), (131, 113), (131, 114), (131, 115), (131, 116), (131, 117), (131, 118), (131, 119), (131, 120), (131, 121), (131, 122), (131, 123), (131, 124), (131, 125), (131, 126), (131, 127), (131, 128), (131, 131), (131, 132), (131, 134), (131, 139), (131, 141), (132, 87), (132, 89), (132, 90), (132, 91), (132, 92), (132, 95), (132, 96), (132, 97), (132, 98), (132, 99), (132, 101), (132, 109), (132, 111), (132, 112), (132, 113), (132, 114), (132, 115), (132, 116), (132, 117), (132, 118), (132, 119), (132, 120), (132, 121), (132, 122), (132, 123), (132, 124), (132, 125), (132, 126), (132, 127),
(132, 128), (132, 129), (132, 130), (132, 131), (132, 132), (132, 133), (132, 135), (132, 136), (132, 137), (132, 141), (133, 87), (133, 94), (133, 95), (133, 96), (133, 97), (133, 98), (133, 99), (133, 100), (133, 102), (133, 109), (133, 111), (133, 112), (133, 113), (133, 114), (133, 115), (133, 116), (133, 117), (133, 118), (133, 119), (133, 120), (133, 121), (133, 122), (133, 123), (133, 124), (133, 125), (133, 126), (133, 127), (133, 128), (133, 129), (133, 130), (133, 131), (133, 132), (133, 133), (133, 134), (133, 139), (133, 141), (134, 87), (134, 89), (134, 90), (134, 91), (134, 92), (134, 93), (134, 94), (134, 95), (134, 96), (134, 97), (134, 98), (134, 99), (134, 100), (134, 101), (134, 103), (134, 108), (134, 110), (134, 111), (134, 112), (134, 113), (134, 114), (134, 115), (134, 116), (134, 117), (134, 118), (134, 119),
(134, 120), (134, 121), (134, 122), (134, 123), (134, 124), (134, 125), (134, 126), (134, 127), (134, 128), (134, 129), (134, 130), (134, 131), (134, 132), (134, 133), (134, 134), (134, 135), (134, 136), (134, 137), (134, 138), (134, 139), (134, 141), (135, 87), (135, 89), (135, 90), (135, 91), (135, 92), (135, 93), (135, 94), (135, 95), (135, 96), (135, 97), (135, 98), (135, 99), (135, 100), (135, 101), (135, 102), (135, 104), (135, 107), (135, 109), (135, 110), (135, 111), (135, 112), (135, 113), (135, 114), (135, 115), (135, 116), (135, 117), (135, 118), (135, 119), (135, 120), (135, 121), (135, 122), (135, 123), (135, 124), (135, 125), (135, 126), (135, 127), (135, 128), (135, 129), (135, 130), (135, 131), (135, 132), (135, 133), (135, 134), (135, 135), (135, 136), (135, 137), (135, 138), (135, 139), (135, 140), (135, 142), (136, 87),
(136, 89), (136, 90), (136, 91), (136, 92), (136, 93), (136, 94), (136, 95), (136, 96), (136, 97), (136, 98), (136, 99), (136, 100), (136, 101), (136, 102), (136, 103), (136, 108), (136, 109), (136, 110), (136, 111), (136, 112), (136, 113), (136, 114), (136, 115), (136, 116), (136, 117), (136, 118), (136, 119), (136, 120), (136, 121), (136, 122), (136, 123), (136, 124), (136, 125), (136, 126), (136, 127), (136, 128), (136, 129), (136, 130), (136, 131), (136, 132), (136, 133), (136, 134), (136, 135), (136, 136), (136, 137), (136, 138), (136, 139), (136, 140), (136, 141), (136, 145), (137, 80), (137, 82), (137, 83), (137, 84), (137, 85), (137, 88), (137, 89), (137, 90), (137, 91), (137, 92), (137, 93), (137, 94), (137, 95), (137, 96), (137, 97), (137, 98), (137, 99), (137, 100), (137, 101), (137, 102), (137, 103), (137, 104),
(137, 105), (137, 106), (137, 107), (137, 108), (137, 109), (137, 110), (137, 111), (137, 112), (137, 113), (137, 114), (137, 115), (137, 116), (137, 117), (137, 118), (137, 119), (137, 120), (137, 121), (137, 122), (137, 123), (137, 124), (137, 125), (137, 126), (137, 127), (137, 128), (137, 129), (137, 130), (137, 131), (137, 132), (137, 133), (137, 134), (137, 135), (137, 136), (137, 137), (137, 138), (137, 139), (137, 140), (137, 141), (137, 144), (138, 79), (138, 81), (138, 82), (138, 83), (138, 84), (138, 85), (138, 86), (138, 87), (138, 89), (138, 90), (138, 91), (138, 92), (138, 93), (138, 101), (138, 102), (138, 103), (138, 104), (138, 105), (138, 106), (138, 107), (138, 108), (138, 109), (138, 110), (138, 111), (138, 112), (138, 113), (138, 114), (138, 115), (138, 116), (138, 117), (138, 118), (138, 119), (138, 120), (138, 121),
(138, 122), (138, 123), (138, 124), (138, 125), (138, 126), (138, 127), (138, 128), (138, 129), (138, 130), (138, 131), (138, 132), (138, 133), (138, 134), (138, 135), (138, 136), (138, 137), (138, 138), (138, 139), (138, 143), (139, 89), (139, 90), (139, 91), (139, 94), (139, 95), (139, 96), (139, 97), (139, 98), (139, 99), (139, 100), (139, 102), (139, 103), (139, 104), (139, 105), (139, 106), (139, 107), (139, 108), (139, 109), (139, 110), (139, 111), (139, 112), (139, 113), (139, 114), (139, 115), (139, 116), (139, 117), (139, 118), (139, 119), (139, 120), (139, 121), (139, 122), (139, 123), (139, 124), (139, 125), (139, 126), (139, 127), (139, 128), (139, 129), (139, 130), (139, 131), (139, 132), (139, 133), (139, 134), (139, 135), (139, 136), (139, 137), (139, 138), (139, 141), (140, 89), (140, 92), (140, 101), (140, 103), (140, 104),
(140, 105), (140, 106), (140, 107), (140, 108), (140, 109), (140, 110), (140, 111), (140, 112), (140, 113), (140, 114), (140, 115), (140, 116), (140, 117), (140, 118), (140, 119), (140, 120), (140, 121), (140, 122), (140, 123), (140, 124), (140, 125), (140, 126), (140, 127), (140, 128), (140, 129), (140, 130), (140, 131), (140, 132), (140, 133), (140, 134), (140, 135), (140, 136), (140, 139), (141, 89), (141, 91), (141, 102), (141, 104), (141, 105), (141, 106), (141, 107), (141, 108), (141, 109), (141, 110), (141, 111), (141, 112), (141, 113), (141, 114), (141, 115), (141, 116), (141, 117), (141, 118), (141, 119), (141, 120), (141, 121), (141, 122), (141, 123), (141, 124), (141, 125), (141, 126), (141, 127), (141, 128), (141, 129), (141, 130), (141, 131), (141, 132), (141, 133), (141, 134), (141, 135), (141, 138), (142, 89), (142, 91), (142, 102),
(142, 104), (142, 105), (142, 106), (142, 107), (142, 108), (142, 109), (142, 110), (142, 111), (142, 112), (142, 113), (142, 114), (142, 115), (142, 116), (142, 117), (142, 118), (142, 119), (142, 120), (142, 121), (142, 122), (142, 123), (142, 124), (142, 125), (142, 126), (142, 127), (142, 128), (142, 129), (142, 130), (142, 131), (142, 132), (142, 133), (142, 134), (142, 136), (143, 89), (143, 102), (143, 104), (143, 105), (143, 106), (143, 107), (143, 108), (143, 109), (143, 110), (143, 111), (143, 112), (143, 113), (143, 114), (143, 115), (143, 116), (143, 117), (143, 118), (143, 119), (143, 120), (143, 121), (143, 122), (143, 123), (143, 124), (143, 125), (143, 126), (143, 127), (143, 128), (143, 129), (143, 130), (143, 131), (143, 132), (143, 133), (143, 135), (144, 88), (144, 89), (144, 102), (144, 104), (144, 105), (144, 106), (144, 107),
(144, 108), (144, 109), (144, 110), (144, 111), (144, 112), (144, 113), (144, 114), (144, 115), (144, 116), (144, 117), (144, 118), (144, 119), (144, 120), (144, 121), (144, 122), (144, 123), (144, 124), (144, 125), (144, 126), (144, 127), (144, 128), (144, 129), (144, 130), (144, 134), (145, 88), (145, 102), (145, 104), (145, 105), (145, 106), (145, 107), (145, 108), (145, 109), (145, 110), (145, 111), (145, 112), (145, 113), (145, 114), (145, 115), (145, 116), (145, 117), (145, 118), (145, 119), (145, 120), (145, 121), (145, 122), (145, 123), (145, 124), (145, 125), (145, 126), (145, 127), (145, 128), (145, 131), (145, 134), (146, 87), (146, 101), (146, 103), (146, 104), (146, 105), (146, 106), (146, 107), (146, 108), (146, 109), (146, 110), (146, 111), (146, 112), (146, 113), (146, 114), (146, 115), (146, 116), (146, 117), (146, 118), (146, 119),
(146, 120), (146, 121), (146, 122), (146, 123), (146, 124), (146, 125), (146, 129), (146, 130), (146, 134), (147, 86), (147, 87), (147, 101), (147, 103), (147, 104), (147, 105), (147, 106), (147, 107), (147, 108), (147, 109), (147, 110), (147, 111), (147, 112), (147, 113), (147, 114), (147, 115), (147, 116), (147, 117), (147, 118), (147, 119), (147, 120), (147, 121), (147, 122), (147, 123), (147, 124), (147, 125), (147, 127), (147, 134), (148, 85), (148, 100), (148, 102), (148, 103), (148, 104), (148, 105), (148, 106), (148, 107), (148, 108), (148, 109), (148, 110), (148, 111), (148, 112), (148, 113), (148, 114), (148, 115), (148, 116), (148, 117), (148, 118), (148, 119), (148, 120), (148, 121), (148, 122), (148, 123), (148, 125), (148, 135), (149, 99), (149, 101), (149, 102), (149, 103), (149, 105), (149, 106), (149, 107), (149, 108), (149, 109),
(149, 110), (149, 111), (149, 112), (149, 113), (149, 114), (149, 115), (149, 116), (149, 117), (149, 118), (149, 119), (149, 120), (149, 121), (149, 122), (149, 125), (149, 136), (149, 139), (150, 99), (150, 101), (150, 102), (150, 104), (150, 106), (150, 107), (150, 108), (150, 109), (150, 110), (150, 111), (150, 112), (150, 113), (150, 114), (150, 115), (150, 116), (150, 117), (150, 118), (150, 119), (150, 120), (150, 121), (150, 124), (150, 139), (151, 98), (151, 100), (151, 101), (151, 103), (151, 107), (151, 108), (151, 109), (151, 110), (151, 111), (151, 112), (151, 115), (151, 116), (151, 117), (151, 118), (151, 119), (151, 120), (151, 121), (151, 122), (151, 124), (151, 137), (151, 139), (152, 98), (152, 99), (152, 100), (152, 102), (152, 106), (152, 108), (152, 109), (152, 110), (152, 111), (152, 113), (152, 114), (152, 116), (152, 117),
(152, 118), (152, 119), (152, 121), (152, 138), (153, 97), (153, 99), (153, 101), (153, 107), (153, 109), (153, 110), (153, 112), (153, 115), (153, 117), (153, 118), (153, 120), (154, 96), (154, 98), (154, 100), (154, 107), (154, 109), (154, 111), (154, 116), (154, 118), (154, 120), (155, 95), (155, 97), (155, 99), (155, 107), (155, 110), (155, 117), (155, 120), (156, 94), (156, 97), (156, 99), (156, 107), (156, 109), (156, 117), (156, 120), (157, 93), (157, 95), (157, 98), (157, 107), (157, 118), (157, 121), (158, 92), (158, 94), (158, 97), (158, 98), (158, 107), (158, 108), (158, 118), (158, 121), (159, 107), (159, 118), (159, 121), (160, 106), (160, 107), (160, 119), (160, 121), (160, 132), (161, 106), (161, 119), (161, 120), (161, 132), (162, 106), (162, 119), (162, 120), (162, 132), (163, 106), (163, 119), (163, 132), (164, 106),
(164, 118), (164, 119), (164, 132), (165, 106), (165, 118), (165, 119), (165, 132), (166, 118), (166, 119), (167, 118), (167, 119), (168, 117), (168, 119), (169, 117), (169, 119), (170, 117), (170, 119), )
coordinates_E1E1E1 = ((76, 121),
(76, 122), (77, 120), (77, 122), (78, 120), (78, 122), (79, 120), (79, 122), (80, 105), (80, 120), (80, 123), (81, 105), (81, 119), (81, 121), (81, 122), (81, 123), (81, 127), (81, 129), (82, 105), (82, 119), (82, 121), (82, 122), (82, 123), (82, 125), (82, 126), (82, 128), (83, 105), (83, 119), (83, 121), (83, 122), (83, 123), (83, 124), (83, 127), (84, 105), (84, 119), (84, 121), (84, 122), (84, 123), (84, 124), (84, 126), (85, 104), (85, 106), (85, 119), (85, 121), (85, 122), (85, 123), (85, 124), (85, 126), (86, 103), (86, 106), (86, 118), (86, 120), (86, 121), (86, 122), (86, 123), (86, 125), (87, 102), (87, 106), (87, 118), (87, 120), (87, 121), (87, 122), (87, 123), (87, 125), (88, 92), (88, 101), (88, 104), (88, 105), (88, 107), (88, 118), (88, 120), (88, 121), (88, 122),
(88, 124), (88, 136), (89, 91), (89, 100), (89, 103), (89, 104), (89, 105), (89, 107), (89, 117), (89, 119), (89, 120), (89, 121), (89, 122), (89, 124), (89, 135), (89, 136), (90, 91), (90, 93), (90, 99), (90, 101), (90, 104), (90, 105), (90, 106), (90, 108), (90, 117), (90, 119), (90, 120), (90, 121), (90, 123), (90, 134), (90, 136), (91, 90), (91, 92), (91, 94), (91, 98), (91, 99), (91, 102), (91, 104), (91, 105), (91, 106), (91, 107), (91, 109), (91, 116), (91, 118), (91, 119), (91, 120), (91, 122), (91, 133), (91, 135), (91, 137), (92, 93), (92, 96), (92, 98), (92, 105), (92, 106), (92, 107), (92, 108), (92, 110), (92, 111), (92, 112), (92, 113), (92, 114), (92, 117), (92, 118), (92, 119), (92, 121), (92, 132), (92, 134), (92, 135), (92, 137), (93, 94), (93, 97),
(93, 104), (93, 106), (93, 107), (93, 108), (93, 109), (93, 112), (93, 113), (93, 116), (93, 117), (93, 118), (93, 119), (93, 121), (93, 132), (93, 134), (93, 135), (93, 136), (93, 138), (94, 105), (94, 107), (94, 108), (94, 109), (94, 110), (94, 111), (94, 112), (94, 113), (94, 114), (94, 115), (94, 116), (94, 117), (94, 118), (94, 119), (94, 121), (94, 132), (94, 134), (94, 135), (94, 136), (94, 137), (95, 106), (95, 108), (95, 109), (95, 110), (95, 111), (95, 112), (95, 113), (95, 114), (95, 115), (95, 116), (95, 117), (95, 118), (95, 119), (95, 121), (95, 132), (95, 134), (95, 135), (95, 136), (95, 139), (96, 106), (96, 108), (96, 109), (96, 110), (96, 111), (96, 112), (96, 113), (96, 114), (96, 115), (96, 116), (96, 117), (96, 118), (96, 119), (96, 120), (96, 122), (96, 131),
(96, 133), (96, 134), (96, 135), (96, 137), (97, 106), (97, 108), (97, 109), (97, 110), (97, 111), (97, 112), (97, 113), (97, 114), (97, 115), (97, 116), (97, 117), (97, 118), (97, 119), (97, 120), (97, 122), (97, 130), (97, 132), (97, 133), (97, 134), (97, 136), (98, 105), (98, 107), (98, 108), (98, 109), (98, 110), (98, 111), (98, 112), (98, 113), (98, 114), (98, 115), (98, 116), (98, 117), (98, 118), (98, 119), (98, 120), (98, 121), (98, 122), (98, 124), (98, 125), (98, 126), (98, 127), (98, 128), (98, 131), (98, 132), (98, 133), (98, 134), (98, 136), (99, 103), (99, 106), (99, 107), (99, 108), (99, 109), (99, 110), (99, 111), (99, 112), (99, 113), (99, 114), (99, 115), (99, 116), (99, 117), (99, 118), (99, 119), (99, 120), (99, 121), (99, 122), (99, 130), (99, 131), (99, 132),
(99, 133), (99, 135), (100, 101), (100, 105), (100, 106), (100, 107), (100, 108), (100, 109), (100, 110), (100, 111), (100, 112), (100, 113), (100, 114), (100, 115), (100, 116), (100, 117), (100, 118), (100, 119), (100, 120), (100, 121), (100, 122), (100, 123), (100, 124), (100, 125), (100, 126), (100, 127), (100, 128), (100, 129), (100, 130), (100, 131), (100, 132), (100, 133), (100, 135), (101, 88), (101, 90), (101, 98), (101, 100), (101, 103), (101, 104), (101, 105), (101, 106), (101, 107), (101, 108), (101, 109), (101, 110), (101, 111), (101, 112), (101, 113), (101, 114), (101, 115), (101, 116), (101, 117), (101, 118), (101, 119), (101, 120), (101, 121), (101, 122), (101, 123), (101, 124), (101, 125), (101, 126), (101, 127), (101, 128), (101, 129), (101, 130), (101, 131), (101, 132), (101, 133), (101, 135), (102, 85), (102, 87), (102, 88),
(102, 91), (102, 92), (102, 93), (102, 94), (102, 95), (102, 96), (102, 97), (102, 101), (102, 102), (102, 103), (102, 104), (102, 105), (102, 106), (102, 107), (102, 108), (102, 109), (102, 110), (102, 111), (102, 112), (102, 113), (102, 114), (102, 115), (102, 116), (102, 117), (102, 118), (102, 119), (102, 120), (102, 121), (102, 122), (102, 123), (102, 124), (102, 125), (102, 126), (102, 127), (102, 128), (102, 129), (102, 130), (102, 131), (102, 132), (102, 133), (102, 135), (103, 84), (103, 90), (103, 98), (103, 99), (103, 100), (103, 101), (103, 102), (103, 103), (103, 104), (103, 105), (103, 106), (103, 107), (103, 108), (103, 109), (103, 110), (103, 111), (103, 112), (103, 113), (103, 114), (103, 115), (103, 116), (103, 117), (103, 118), (103, 119), (103, 120), (103, 121), (103, 122), (103, 123), (103, 124), (103, 125), (103, 126),
(103, 127), (103, 128), (103, 129), (103, 130), (103, 131), (103, 132), (103, 133), (103, 134), (103, 136), (104, 91), (104, 93), (104, 94), (104, 95), (104, 96), (104, 97), (104, 98), (104, 99), (104, 100), (104, 101), (104, 102), (104, 103), (104, 104), (104, 105), (104, 106), (104, 107), (104, 108), (104, 109), (104, 110), (104, 111), (104, 112), (104, 113), (104, 114), (104, 115), (104, 116), (104, 117), (104, 118), (104, 119), (104, 120), (104, 121), (104, 122), (104, 123), (104, 124), (104, 125), (104, 126), (104, 127), (104, 128), (104, 129), (104, 130), (104, 131), (104, 132), (104, 133), (104, 134), (104, 135), (104, 138), (104, 139), (104, 141), (105, 91), (105, 93), (105, 94), (105, 95), (105, 96), (105, 97), (105, 98), (105, 99), (105, 100), (105, 101), (105, 102), (105, 103), (105, 108), (105, 109), (105, 110), (105, 111),
(105, 112), (105, 113), (105, 114), (105, 115), (105, 116), (105, 117), (105, 118), (105, 119), (105, 120), (105, 121), (105, 122), (105, 123), (105, 124), (105, 125), (105, 126), (105, 127), (105, 128), (105, 129), (105, 130), (105, 131), (105, 132), (105, 133), (105, 134), (105, 135), (105, 136), (105, 142), (106, 91), (106, 93), (106, 94), (106, 95), (106, 96), (106, 97), (106, 98), (106, 99), (106, 100), (106, 104), (106, 105), (106, 106), (106, 107), (106, 110), (106, 111), (106, 112), (106, 113), (106, 114), (106, 115), (106, 116), (106, 117), (106, 118), (106, 119), (106, 120), (106, 121), (106, 122), (106, 123), (106, 124), (106, 125), (106, 126), (106, 127), (106, 128), (106, 129), (106, 130), (106, 131), (106, 132), (106, 133), (106, 134), (106, 135), (106, 136), (106, 137), (106, 138), (106, 139), (106, 140), (106, 142), (107, 91),
(107, 93), (107, 94), (107, 95), (107, 96), (107, 97), (107, 98), (107, 101), (107, 102), (107, 103), (107, 108), (107, 111), (107, 112), (107, 113), (107, 114), (107, 115), (107, 116), (107, 117), (107, 118), (107, 119), (107, 120), (107, 121), (107, 122), (107, 123), (107, 124), (107, 125), (107, 126), (107, 127), (107, 128), (107, 129), (107, 130), (107, 131), (107, 132), (107, 133), (107, 134), (107, 135), (107, 136), (107, 137), (107, 138), (107, 139), (107, 141), (108, 91), (108, 93), (108, 94), (108, 95), (108, 96), (108, 97), (108, 100), (108, 110), (108, 112), (108, 113), (108, 114), (108, 115), (108, 116), (108, 117), (108, 118), (108, 119), (108, 120), (108, 121), (108, 122), (108, 123), (108, 124), (108, 125), (108, 126), (108, 127), (108, 128), (108, 129), (108, 130), (108, 131), (108, 132), (108, 133), (108, 134), (108, 135),
(108, 136), (108, 137), (108, 138), (108, 140), (109, 90), (109, 92), (109, 93), (109, 94), (109, 95), (109, 96), (109, 98), (109, 111), (109, 113), (109, 114), (109, 115), (109, 116), (109, 117), (109, 118), (109, 119), (109, 120), (109, 121), (109, 122), (109, 123), (109, 124), (109, 125), (109, 126), (109, 127), (109, 128), (109, 129), (109, 130), (109, 131), (109, 132), (109, 133), (109, 134), (109, 135), (109, 136), (109, 137), (109, 138), (109, 140), (110, 90), (110, 92), (110, 93), (110, 94), (110, 95), (110, 97), (110, 111), (110, 113), (110, 114), (110, 115), (110, 116), (110, 117), (110, 118), (110, 119), (110, 120), (110, 121), (110, 122), (110, 123), (110, 124), (110, 125), (110, 126), (110, 127), (110, 128), (110, 129), (110, 130), (110, 131), (110, 132), (110, 134), (110, 135), (110, 136), (110, 137), (110, 138), (110, 140),
(111, 89), (111, 91), (111, 92), (111, 93), (111, 94), (111, 96), (111, 111), (111, 113), (111, 114), (111, 115), (111, 116), (111, 117), (111, 118), (111, 119), (111, 120), (111, 121), (111, 122), (111, 123), (111, 124), (111, 125), (111, 126), (111, 127), (111, 128), (111, 129), (111, 130), (111, 133), (111, 136), (111, 137), (111, 138), (111, 140), (112, 88), (112, 90), (112, 94), (112, 96), (112, 111), (112, 113), (112, 114), (112, 115), (112, 116), (112, 117), (112, 118), (112, 119), (112, 120), (112, 121), (112, 122), (112, 123), (112, 124), (112, 125), (112, 126), (112, 127), (112, 128), (112, 129), (112, 131), (112, 134), (112, 137), (112, 140), (113, 77), (113, 82), (113, 83), (113, 84), (113, 85), (113, 86), (113, 87), (113, 89), (113, 91), (113, 92), (113, 96), (113, 111), (113, 113), (113, 114), (113, 115), (113, 117),
(113, 118), (113, 119), (113, 120), (113, 121), (113, 122), (113, 123), (113, 124), (113, 125), (113, 126), (113, 127), (113, 128), (113, 130), (113, 136), (113, 138), (113, 140), (114, 77), (114, 79), (114, 80), (114, 83), (114, 90), (114, 94), (114, 95), (114, 111), (114, 116), (114, 119), (114, 120), (114, 121), (114, 122), (114, 123), (114, 124), (114, 125), (114, 126), (114, 127), (114, 129), (114, 137), (115, 77), (115, 84), (115, 89), (115, 95), (115, 111), (115, 113), (115, 114), (115, 118), (115, 120), (115, 121), (115, 122), (115, 123), (115, 129), (115, 137), (116, 77), (116, 85), (116, 88), (116, 111), (116, 119), (116, 121), (116, 122), (116, 125), (116, 126), (116, 128), (117, 119), (117, 121), (117, 123), (118, 120), (118, 123), (119, 120), (119, 122), (120, 121), )
coordinates_FEDAB9 = ((126, 79),
(126, 80), (127, 78), (127, 82), (128, 77), (128, 79), (128, 80), (128, 82), (129, 76), (129, 78), (129, 79), (129, 80), (129, 81), (129, 83), (130, 75), (130, 77), (130, 78), (130, 79), (130, 80), (130, 81), (130, 83), (131, 75), (131, 77), (131, 78), (131, 79), (131, 80), (131, 81), (131, 82), (131, 84), (132, 76), (132, 78), (132, 79), (132, 80), (132, 81), (132, 82), (132, 84), (133, 76), (133, 78), (133, 79), (133, 80), (133, 81), (133, 82), (133, 83), (133, 85), (134, 76), (134, 78), (134, 85), (135, 76), (135, 80), (135, 81), (135, 82), (135, 83), (135, 85), (136, 75), (136, 78), (137, 75), (137, 77), (137, 78), (138, 74), (138, 77), (139, 74), (139, 77), (140, 74), (140, 76), (140, 77), (140, 78), (140, 79), (140, 80), (140, 81), (140, 82), (140, 83), (140, 84), (140, 85),
(140, 87), (141, 75), (141, 82), (141, 83), (141, 84), (141, 85), (141, 87), (141, 94), (141, 96), (141, 97), (141, 98), (141, 100), (142, 77), (142, 78), (142, 80), (142, 93), )
coordinates_D970D6 = ((123, 83),
(124, 79), (124, 81), (124, 85), (124, 86), (124, 87), (124, 88), (124, 89), (124, 90), (125, 81), (125, 83), (125, 84), (125, 90), (126, 86), (126, 88), (126, 90), (127, 88), (127, 90), (128, 88), (128, 90), (129, 89), (130, 89), )
coordinates_01CED1 = ((143, 82),
(143, 84), (143, 86), (143, 97), (143, 98), (143, 100), (144, 86), (144, 91), (144, 93), (144, 94), (144, 95), (144, 96), (144, 100), (145, 80), (145, 82), (145, 83), (145, 85), (145, 90), (145, 97), (145, 99), (146, 79), (146, 82), (146, 84), (146, 90), (146, 92), (146, 93), (146, 94), (146, 95), (146, 96), (146, 97), (146, 99), (147, 78), (147, 80), (147, 81), (147, 83), (147, 89), (147, 91), (147, 92), (147, 93), (147, 94), (147, 95), (147, 96), (147, 98), (148, 78), (148, 80), (148, 81), (148, 83), (148, 88), (148, 90), (148, 91), (148, 92), (148, 93), (148, 94), (148, 95), (148, 96), (148, 98), (149, 79), (149, 81), (149, 83), (149, 86), (149, 87), (149, 89), (149, 90), (149, 91), (149, 92), (149, 93), (149, 94), (149, 95), (149, 97), (150, 80), (150, 82), (150, 83), (150, 84),
(150, 85), (150, 92), (150, 93), (150, 94), (150, 96), (151, 81), (151, 89), (151, 92), (151, 94), (151, 96), (152, 82), (152, 84), (152, 85), (152, 87), (152, 92), (152, 95), (153, 91), (153, 94), (153, 103), (153, 105), (154, 91), (154, 93), (154, 105), (155, 90), (155, 92), (155, 102), (155, 105), (155, 112), (156, 89), (156, 91), (156, 101), (156, 103), (156, 105), (156, 113), (157, 88), (157, 90), (157, 101), (157, 103), (157, 105), (157, 111), (157, 113), (158, 87), (158, 90), (158, 100), (158, 102), (158, 103), (158, 104), (158, 105), (158, 110), (158, 113), (159, 87), (159, 90), (159, 99), (159, 101), (159, 102), (159, 104), (159, 110), (159, 113), (160, 87), (160, 88), (160, 89), (160, 90), (160, 91), (160, 92), (160, 93), (160, 94), (160, 95), (160, 96), (160, 97), (160, 100), (160, 101), (160, 102),
(160, 104), (160, 109), (160, 111), (160, 113), (161, 87), (161, 89), (161, 90), (161, 100), (161, 101), (161, 102), (161, 104), (161, 109), (161, 110), (161, 111), (161, 113), (162, 90), (162, 91), (162, 92), (162, 93), (162, 94), (162, 95), (162, 96), (162, 97), (162, 98), (162, 99), (162, 100), (162, 101), (162, 102), (162, 104), (162, 108), (162, 110), (162, 111), (162, 113), (163, 88), (163, 96), (163, 100), (163, 101), (163, 102), (163, 104), (163, 108), (163, 110), (163, 111), (163, 113), (164, 90), (164, 92), (164, 93), (164, 94), (164, 95), (164, 96), (164, 97), (164, 98), (164, 101), (164, 102), (164, 104), (164, 108), (164, 110), (164, 111), (164, 113), (165, 100), (165, 102), (165, 104), (165, 108), (165, 110), (165, 111), (165, 113), (166, 101), (166, 104), (166, 105), (166, 108), (166, 110), (166, 111), (166, 113),
(167, 101), (167, 103), (167, 105), (167, 109), (167, 111), (167, 113), (168, 101), (168, 103), (168, 104), (168, 106), (168, 109), (168, 111), (168, 113), (169, 102), (169, 104), (169, 105), (169, 108), (169, 109), (169, 110), (169, 112), (170, 103), (170, 106), (170, 109), (170, 110), (170, 112), (171, 104), (171, 107), (171, 108), (171, 109), (171, 111), (172, 106), (172, 110), (173, 107), (173, 109), )
coordinates_FE3E96 = ((121, 99),
(121, 100), (121, 101), (121, 102), (122, 94), (122, 95), (122, 96), (122, 97), (122, 98), (122, 104), (122, 105), (122, 132), (122, 133), (122, 134), (122, 136), (123, 93), (123, 99), (123, 100), (123, 101), (123, 102), (123, 103), (123, 107), (123, 108), (123, 109), (123, 110), (123, 111), (123, 112), (123, 113), (123, 114), (123, 115), (123, 116), (123, 117), (123, 119), (123, 124), (123, 126), (123, 127), (123, 128), (123, 129), (123, 130), (123, 131), (123, 136), (124, 93), (124, 95), (124, 97), (124, 100), (124, 101), (124, 102), (124, 103), (124, 104), (124, 105), (124, 106), (124, 118), (124, 125), (124, 132), (124, 136), (125, 92), (125, 94), (125, 96), (125, 99), (125, 101), (125, 102), (125, 103), (125, 104), (125, 105), (125, 106), (125, 107), (125, 108), (125, 111), (125, 112), (125, 117), (125, 126), (125, 128), (125, 129),
(125, 130), (125, 131), (125, 134), (125, 136), (126, 92), (126, 95), (126, 100), (126, 102), (126, 103), (126, 104), (126, 105), (126, 106), (126, 107), (126, 110), (126, 113), (126, 115), (126, 127), (126, 132), (126, 136), (127, 92), (127, 100), (127, 102), (127, 103), (127, 104), (127, 105), (127, 106), (127, 108), (127, 128), (127, 131), (127, 135), (127, 136), (128, 92), (128, 94), (128, 101), (128, 103), (128, 104), (128, 105), (128, 107), (128, 130), (128, 135), (128, 136), (129, 92), (129, 93), (129, 102), (129, 104), (129, 105), (129, 107), (129, 135), (129, 136), (130, 92), (130, 102), (130, 104), (130, 105), (130, 107), (130, 135), (131, 103), (131, 105), (131, 107), (132, 103), (132, 107), (133, 104), (133, 106), )
coordinates_AF3060 = ((123, 146),
(123, 148), (123, 149), (123, 151), (124, 145), (124, 151), (125, 145), (125, 147), (125, 151), (126, 146), (126, 149), (127, 146), (128, 145), (128, 147), (129, 144), (129, 146), (130, 143), (130, 145), (131, 143), (131, 144), (132, 143), )
coordinates_ACFF2F = ((128, 149),
(128, 152), (129, 148), (129, 152), (130, 147), (130, 149), (130, 150), (130, 152), (131, 146), (131, 149), (131, 150), (131, 152), (132, 148), (132, 149), (132, 150), (132, 152), (133, 147), (133, 148), (133, 149), (133, 150), (133, 152), (134, 143), (134, 148), (134, 149), (134, 150), (134, 152), (135, 148), (135, 149), (136, 147), (136, 149), (136, 151), (137, 147), (137, 150), (138, 146), (138, 149), (139, 145), (139, 148), (140, 143), (140, 146), (140, 148), (141, 141), (141, 147), (142, 139), (142, 143), (142, 144), (142, 145), (142, 147), (143, 138), (143, 141), (143, 142), (143, 147), (144, 139), )
coordinates_FFDAB9 = ((109, 74),
(109, 76), (109, 86), (109, 88), (110, 74), (110, 78), (110, 83), (110, 84), (110, 85), (111, 73), (111, 75), (111, 77), (111, 80), (111, 81), (111, 82), (111, 83), (111, 84), (111, 85), (111, 87), (112, 73), (112, 75), (112, 79), (113, 72), (113, 75), (114, 72), (114, 75), (115, 72), (115, 75), (116, 72), (116, 75), (117, 72), (117, 75), (118, 73), (118, 74), )
coordinates_DA70D6 = ((116, 80),
(116, 82), (116, 83), (116, 90), (117, 79), (117, 84), (117, 89), (117, 90), (118, 80), (118, 81), (118, 82), (118, 85), (118, 88), (118, 90), (119, 76), (119, 78), (119, 83), (119, 84), (119, 87), (119, 90), (120, 79), (120, 80), (120, 81), (120, 82), (120, 90), (121, 84), (121, 85), (121, 86), (121, 87), (121, 88), (121, 90), )
coordinates_00CED1 = ((74, 101),
(74, 103), (74, 104), (74, 105), (75, 99), (75, 107), (75, 108), (76, 98), (76, 101), (76, 102), (76, 103), (76, 104), (76, 105), (76, 106), (76, 108), (77, 97), (77, 99), (77, 100), (77, 101), (77, 102), (77, 103), (77, 106), (77, 107), (77, 109), (78, 98), (78, 100), (78, 101), (78, 102), (78, 103), (78, 104), (78, 105), (78, 106), (78, 107), (78, 109), (79, 98), (79, 100), (79, 101), (79, 103), (79, 107), (79, 110), (80, 92), (80, 93), (80, 99), (80, 101), (80, 103), (80, 107), (80, 110), (81, 91), (81, 95), (81, 98), (81, 100), (81, 101), (81, 103), (81, 107), (81, 110), (82, 90), (82, 93), (82, 94), (82, 97), (82, 98), (82, 99), (82, 100), (82, 101), (82, 103), (82, 107), (82, 109), (82, 111), (83, 90), (83, 92), (83, 93), (83, 94), (83, 95), (83, 98),
(83, 99), (83, 100), (83, 101), (83, 103), (83, 107), (83, 108), (83, 111), (84, 89), (84, 91), (84, 93), (84, 94), (84, 95), (84, 96), (84, 97), (84, 98), (84, 99), (84, 100), (84, 101), (84, 103), (84, 108), (84, 110), (84, 112), (85, 89), (85, 94), (85, 95), (85, 96), (85, 97), (85, 98), (85, 99), (85, 100), (85, 102), (85, 108), (85, 110), (85, 111), (85, 113), (86, 88), (86, 90), (86, 94), (86, 95), (86, 96), (86, 97), (86, 98), (86, 99), (86, 101), (86, 108), (86, 110), (86, 111), (86, 113), (87, 88), (87, 90), (87, 94), (87, 96), (87, 97), (87, 98), (87, 100), (87, 109), (87, 111), (87, 113), (88, 86), (88, 88), (88, 90), (88, 94), (88, 96), (88, 97), (88, 99), (88, 109), (88, 112), (89, 84), (89, 89), (89, 95), (89, 98), (89, 109),
(89, 112), (90, 82), (90, 85), (90, 86), (90, 88), (90, 95), (90, 97), (90, 110), (90, 112), (91, 84), (91, 85), (91, 87), (92, 81), (92, 83), (92, 84), (92, 85), (92, 87), (93, 80), (93, 82), (93, 83), (93, 84), (93, 85), (93, 86), (93, 87), (93, 88), (93, 89), (93, 91), (93, 100), (93, 102), (94, 79), (94, 81), (94, 82), (94, 83), (94, 84), (94, 85), (94, 86), (94, 87), (94, 93), (94, 99), (94, 103), (95, 79), (95, 81), (95, 82), (95, 83), (95, 84), (95, 85), (95, 86), (95, 87), (95, 88), (95, 89), (95, 90), (95, 91), (95, 94), (95, 100), (95, 101), (95, 103), (96, 78), (96, 80), (96, 81), (96, 82), (96, 83), (96, 84), (96, 85), (96, 86), (96, 87), (96, 88), (96, 89), (96, 90), (96, 91), (96, 92), (96, 93), (96, 96),
(96, 99), (96, 100), (96, 101), (96, 102), (96, 104), (97, 78), (97, 80), (97, 81), (97, 82), (97, 83), (97, 84), (97, 85), (97, 86), (97, 87), (97, 88), (97, 89), (97, 90), (97, 91), (97, 92), (97, 93), (97, 94), (97, 95), (97, 97), (97, 98), (97, 99), (97, 103), (98, 78), (98, 80), (98, 81), (98, 82), (98, 83), (98, 84), (98, 85), (98, 86), (98, 92), (98, 93), (98, 94), (98, 95), (98, 96), (98, 97), (98, 101), (98, 102), (99, 79), (99, 81), (99, 82), (99, 83), (99, 84), (99, 87), (99, 88), (99, 89), (99, 90), (99, 91), (99, 98), (99, 99), (100, 80), (100, 82), (100, 85), (100, 86), (100, 92), (100, 93), (100, 94), (100, 95), (100, 96), (101, 80), (101, 82), (101, 84), (102, 79), (102, 82), (103, 77), (103, 80), (103, 82), (104, 79),
(104, 80), (104, 82), (104, 86), (104, 88), (105, 77), (105, 79), (105, 80), (105, 81), (105, 82), (105, 83), (105, 84), (105, 85), (105, 89), (106, 78), (107, 79), (107, 81), (107, 85), (107, 86), (107, 88), (108, 83), (108, 84), )
coordinates_A120F0 = ((122, 138),
(122, 140), (122, 141), (122, 143), (123, 138), (123, 144), (124, 138), (124, 140), (124, 143), (125, 138), (126, 138), (126, 140), (127, 138), (127, 140), (128, 138), (128, 139), (129, 138), (130, 137), )
coordinates_ADFF2F = ((100, 137),
(100, 139), (100, 140), (100, 141), (100, 142), (100, 143), (100, 144), (100, 146), (101, 137), (101, 146), (102, 138), (102, 140), (102, 141), (102, 144), (102, 146), (103, 143), (103, 146), (104, 144), (104, 146), (105, 144), (105, 147), (106, 144), (106, 147), (107, 144), (107, 146), (107, 148), (108, 143), (108, 145), (108, 146), (108, 147), (108, 149), (109, 142), (109, 144), (109, 145), (109, 146), (109, 147), (109, 149), (110, 143), (110, 146), (110, 147), (110, 149), (111, 144), (111, 147), (111, 149), (112, 146), (112, 149), (113, 147), (113, 149), )
coordinates_A020F0 = ((114, 142),
(115, 140), (115, 143), (116, 141), (116, 144), (117, 141), (117, 144), (118, 141), (118, 143), (118, 145), (119, 142), (119, 146), (120, 142), (120, 146), (121, 145), (121, 146), )
coordinates_B03060 = ((111, 142),
(112, 142), (112, 143), (113, 143), (113, 144), (114, 144), (114, 146), (115, 145), (115, 147), (115, 148), (116, 146), (116, 149), (116, 150), (116, 152), (117, 147), (117, 152), (118, 147), (118, 149), (118, 150), (118, 152), (119, 148), (119, 152), (120, 148), (120, 150), (120, 152), (121, 152), )
coordinates_ACD8E6 = ((79, 137),
(80, 136), (80, 138), (81, 135), (81, 137), (81, 139), (82, 134), (82, 136), (82, 137), (83, 133), (83, 136), (83, 137), (83, 138), (83, 140), (84, 133), (84, 135), (84, 136), (84, 137), (84, 138), (84, 139), (84, 141), (85, 132), (85, 134), (85, 138), (85, 139), (85, 141), (86, 132), (86, 133), (86, 138), (86, 139), (86, 140), (86, 142), (87, 131), (87, 134), (87, 138), (87, 140), (87, 142), (88, 130), (88, 133), (88, 138), (88, 140), (88, 141), (88, 143), (89, 129), (89, 132), (89, 138), (89, 143), (90, 129), (90, 131), (90, 139), (90, 141), (90, 142), (91, 128), (91, 131), (92, 130), (93, 127), (93, 130), (94, 127), (94, 130), (95, 127), (95, 129), (96, 127), (96, 128), )
coordinates_FF3E96 = ((109, 102),
(109, 104), (109, 105), (109, 106), (109, 108), (110, 100), (110, 109), (111, 99), (111, 102), (111, 103), (111, 104), (111, 105), (111, 106), (111, 107), (111, 109), (112, 98), (112, 100), (112, 101), (112, 102), (112, 103), (112, 104), (112, 105), (112, 106), (112, 107), (112, 109), (113, 98), (113, 100), (113, 101), (113, 102), (113, 103), (113, 104), (113, 105), (113, 106), (113, 107), (113, 109), (114, 98), (114, 100), (114, 101), (114, 102), (114, 103), (114, 104), (114, 105), (114, 106), (114, 108), (114, 109), (114, 132), (114, 134), (115, 97), (115, 99), (115, 100), (115, 101), (115, 102), (115, 103), (115, 104), (115, 105), (115, 106), (115, 108), (115, 109), (115, 131), (115, 135), (116, 93), (116, 97), (116, 99), (116, 100), (116, 101), (116, 102), (116, 103), (116, 104), (116, 105), (116, 106), (116, 107), (116, 109), (116, 131),
(116, 133), (116, 134), (116, 136), (117, 93), (117, 94), (117, 97), (117, 99), (117, 100), (117, 101), (117, 102), (117, 103), (117, 104), (117, 105), (117, 106), (117, 107), (117, 109), (117, 113), (117, 114), (117, 115), (117, 117), (117, 130), (117, 132), (117, 133), (117, 134), (117, 135), (117, 137), (117, 139), (118, 93), (118, 96), (118, 97), (118, 104), (118, 105), (118, 106), (118, 107), (118, 108), (118, 109), (118, 111), (118, 112), (118, 113), (118, 114), (118, 118), (118, 125), (118, 127), (118, 128), (118, 131), (118, 132), (118, 133), (118, 135), (118, 136), (118, 139), (119, 93), (119, 98), (119, 99), (119, 100), (119, 101), (119, 102), (119, 103), (119, 112), (119, 116), (119, 118), (119, 124), (119, 134), (120, 93), (120, 95), (120, 96), (120, 104), (120, 105), (120, 106), (120, 107), (120, 108), (120, 110), (120, 117),
(120, 118), (120, 124), (120, 126), (120, 127), (120, 128), (120, 129), (120, 130), (120, 131), (120, 132), (120, 133), (120, 136), (120, 137), (120, 138), (120, 140), (121, 110), )
coordinates_7EFFD4 = ((153, 123),
(153, 125), (154, 124), (154, 126), (155, 125), (155, 127), (156, 126), (156, 128), (157, 126), (157, 129), (158, 126), (158, 129), (159, 127), (159, 130), (160, 127), (160, 130), (161, 127), (161, 130), (162, 127), (162, 130), (163, 127), (163, 130), (164, 127), (164, 128), (164, 130), (165, 128), (165, 130), (165, 134), (166, 128), (166, 130), (166, 133), (166, 135), (167, 128), (167, 130), (167, 131), (167, 132), (167, 134), (167, 136), (168, 128), (168, 129), (168, 130), (168, 133), (168, 135), (169, 129), (169, 131), (169, 134), (170, 129), (170, 133), (171, 128), (171, 131), (172, 128), (172, 130), )
coordinates_B12222 = ((149, 127),
(150, 127), (151, 130), (152, 127), (152, 131), (153, 128), (153, 131), (154, 129), (154, 132), (155, 130), (155, 133), (156, 130), (156, 134), (157, 131), (157, 135), (158, 133), (158, 136), (159, 134), (159, 137), (160, 134), (160, 136), (160, 139), (160, 140), (161, 134), (161, 136), (161, 137), (161, 139), (162, 134), (162, 136), (162, 137), (162, 139), (163, 134), (163, 138), (164, 135), (164, 138), (165, 137), )
coordinates_7FFFD4 = ((71, 124),
(71, 126), (72, 110), (72, 112), (72, 113), (72, 114), (72, 120), (72, 122), (72, 127), (72, 128), (73, 109), (73, 116), (73, 117), (73, 118), (73, 119), (73, 124), (73, 125), (73, 126), (73, 128), (74, 109), (74, 111), (74, 112), (74, 113), (74, 114), (74, 115), (74, 121), (74, 122), (74, 123), (74, 124), (74, 125), (74, 127), (75, 110), (75, 112), (75, 113), (75, 114), (75, 115), (75, 116), (75, 117), (75, 119), (75, 124), (75, 126), (76, 111), (76, 113), (76, 114), (76, 115), (76, 116), (76, 117), (76, 119), (76, 124), (76, 126), (77, 111), (77, 113), (77, 114), (77, 115), (77, 116), (77, 118), (77, 124), (77, 125), (78, 112), (78, 114), (78, 115), (78, 116), (78, 118), (78, 125), (79, 112), (79, 114), (79, 115), (79, 116), (79, 117), (79, 118), (79, 125), (80, 112), (80, 114),
(80, 115), (80, 117), (81, 112), (81, 114), (81, 115), (81, 117), (82, 113), (82, 115), (82, 117), (83, 114), (83, 117), (84, 115), (84, 117), (85, 116), (86, 116), (87, 115), (87, 116), (88, 115), (88, 116), (89, 114), (89, 115), (90, 114), )
coordinates_B22222 = ((74, 129),
(75, 132), (76, 128), (76, 130), (76, 133), (77, 128), (77, 130), (77, 131), (77, 132), (78, 127), (78, 131), (78, 132), (78, 133), (78, 135), (79, 127), (79, 129), (79, 130), (79, 131), (79, 132), (79, 135), (80, 131), (80, 134), (81, 131), (81, 133), (82, 131), (82, 132), (83, 130), (83, 131), (84, 129), (85, 128), (85, 130), (86, 128), (86, 129), (87, 127), (88, 128), (89, 126), (89, 127), (90, 125), (90, 126), (91, 126), (92, 124), (92, 125), (93, 123), (93, 125), (94, 123), (94, 125), (95, 125), (96, 124), )
coordinates_499B3C = ((144, 144),
(144, 145), (145, 136), (145, 141), (145, 142), (145, 143), (145, 146), (146, 136), (146, 140), (146, 143), (146, 144), (146, 146), (147, 137), (147, 139), (147, 143), (147, 144), (147, 146), (148, 130), (148, 132), (148, 142), (148, 143), (148, 144), (148, 146), (149, 133), (149, 141), (149, 143), (149, 145), (150, 131), (150, 134), (150, 141), (150, 143), (150, 145), (151, 132), (151, 135), (151, 141), (151, 144), (152, 133), (152, 136), (152, 141), (152, 144), (153, 134), (153, 137), (153, 140), (153, 143), (154, 135), (154, 137), (154, 140), (154, 141), (154, 143), (155, 136), (155, 140), (155, 142), (156, 137), (156, 139), (156, 140), (156, 142), (157, 138), (157, 141), (158, 139), (158, 141), )
coordinates_633263 = ((154, 114),
(155, 115), (155, 123), (156, 115), (156, 123), (157, 115), (157, 123), (157, 124), (158, 115), (158, 116), (158, 123), (158, 124), (159, 115), (159, 116), (159, 123), (159, 124), (160, 115), (160, 123), (161, 115), (161, 117), (161, 123), (161, 125), (162, 116), (162, 117), (162, 122), (162, 125), (163, 115), (163, 116), (163, 122), (163, 125), (164, 115), (164, 116), (164, 122), (164, 125), (165, 115), (165, 116), (165, 122), (165, 125), (166, 115), (166, 116), (166, 122), (166, 124), (166, 126), (167, 115), (167, 122), (167, 124), (167, 126), (168, 115), (168, 122), (168, 124), (168, 126), (169, 115), (169, 122), (169, 124), (169, 126), (170, 114), (170, 115), (170, 121), (170, 122), (170, 123), (170, 124), (170, 126), (171, 115), (171, 121), (171, 123), (171, 124), (171, 126), (172, 113), (172, 115), (172, 116), (172, 117), (172, 118), (172, 119),
(172, 122), (172, 123), (173, 113), (173, 115), (173, 121), (173, 124), (174, 113), (174, 121), (174, 122), (174, 124), (175, 115), (175, 116), (175, 117), (175, 118), (175, 119), (175, 120), )
coordinates_4A9B3C = ((92, 140),
(92, 142), (92, 143), (92, 145), (93, 140), (93, 145), (94, 141), (94, 143), (94, 145), (95, 142), (95, 145), (96, 142), (96, 145), (97, 139), (97, 145), (98, 138), (98, 140), (98, 141), (98, 142), (98, 143), (98, 145), (98, 146), )
coordinates_218B22 = ((150, 156),
(150, 158), (151, 155), (151, 159), (152, 154), (152, 156), (152, 157), (152, 159), (153, 152), (153, 155), (153, 156), (153, 157), (153, 158), (153, 160), (154, 150), (154, 154), (154, 155), (154, 156), (154, 160), (155, 149), (155, 152), (155, 153), (155, 154), (155, 155), (155, 159), (156, 148), (156, 150), (156, 151), (156, 152), (156, 153), (156, 154), (156, 155), (156, 156), (157, 148), (157, 150), (157, 151), (157, 152), (157, 153), (157, 155), (158, 148), (158, 150), (158, 151), (158, 152), (158, 153), (158, 155), (159, 147), (159, 149), (159, 150), (159, 151), (159, 152), (159, 153), (159, 154), (159, 155), (159, 156), (160, 147), (160, 149), (160, 150), (160, 155), (160, 158), (161, 147), (161, 151), (161, 152), (161, 153), (161, 154), (161, 158), (162, 147), (162, 149), (162, 150), (162, 155), (162, 157), )
coordinates_228B22 = ((78, 147),
(78, 148), (79, 147), (79, 149), (80, 147), (80, 150), (81, 147), (81, 148), (81, 149), (81, 151), (82, 148), (82, 151), (83, 148), (83, 150), (83, 152), (84, 148), (84, 150), (84, 152), (85, 149), (85, 151), (85, 153), (86, 149), (86, 151), (86, 153), (87, 149), (87, 151), (87, 153), (88, 150), (88, 152), (88, 154), (89, 150), (89, 152), (89, 154), (90, 151), (90, 154), (91, 151), (91, 154), (92, 152), (92, 155), (93, 153), (93, 156), (94, 154), (94, 158), (95, 155), (95, 158), )
| 470.988889 | 865 | 0.482177 |
eb7c3fb12e03f2b24dcc584553fc30f0b1f73b73 | 2,253 | py | Python | examples/Redfish/expand_data.py | andreaslangnevyjel/python-ilorest-library | cd40e5ed9dfd615074d34ec6bb929dc8ea04a797 | [
"Apache-2.0"
] | 214 | 2016-04-04T12:24:52.000Z | 2022-03-28T11:35:46.000Z | examples/Redfish/expand_data.py | andreaslangnevyjel/python-ilorest-library | cd40e5ed9dfd615074d34ec6bb929dc8ea04a797 | [
"Apache-2.0"
] | 139 | 2016-04-02T04:22:29.000Z | 2022-03-25T06:54:45.000Z | examples/Redfish/expand_data.py | andreaslangnevyjel/python-ilorest-library | cd40e5ed9dfd615074d34ec6bb929dc8ea04a797 | [
"Apache-2.0"
] | 116 | 2016-04-04T20:39:42.000Z | 2021-11-13T06:53:41.000Z | # Copyright 2020 Hewlett Packard Enterprise Development LP
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
# -*- coding: utf-8 -*-
"""
An example of expanding data responses
"""
import sys
import json
from redfish import RedfishClient
from redfish.rest.v1 import ServerDownOrUnreachableError
def expand_data(_redfishobj, expand_url="/redfish/v1/"):
response = _redfishobj.get(expand_url)
exp_response = _redfishobj.get(expand_url+'?$expand=.')
sys.stdout.write('Standard response:\n')
sys.stdout.write('\t'+str(response.dict)+'\n')
sys.stdout.write('Expanded response:\n')
sys.stdout.write('\t'+str(exp_response.dict)+'\n')
if __name__ == "__main__":
# When running on the server locally use the following commented values
#SYSTEM_URL = None
#LOGIN_ACCOUNT = None
#LOGIN_PASSWORD = None
# When running remotely connect using the secured (https://) address,
# account name, and password to send https requests
# SYSTEM_URL acceptable examples:
# "https://10.0.0.100"
# "https://ilo.hostname"
SYSTEM_URL = "https://10.0.0.100"
LOGIN_ACCOUNT = "admin"
LOGIN_PASSWORD = "password"
#url to be expanded
EXPAND_URL = "/redfish/v1/systems/"
try:
# Create a Redfish client object
REDFISHOBJ = RedfishClient(base_url=SYSTEM_URL, username=LOGIN_ACCOUNT, \
password=LOGIN_PASSWORD)
# Login with the Redfish client
REDFISHOBJ.login()
except ServerDownOrUnreachableError as excp:
sys.stderr.write("ERROR: server not reachable or does not support RedFish.\n")
sys.exit()
expand_data(REDFISHOBJ, EXPAND_URL)
REDFISHOBJ.logout()
| 35.203125 | 100 | 0.684421 |
6989358b5828b06e1b53569a06aa7612e515fb30 | 26,624 | py | Python | tensorflow_probability/python/math/linalg_test.py | timudk/probability | 8bdbf1c0b0f801edaf342f4ffc9caf1cfd6f1103 | [
"Apache-2.0"
] | null | null | null | tensorflow_probability/python/math/linalg_test.py | timudk/probability | 8bdbf1c0b0f801edaf342f4ffc9caf1cfd6f1103 | [
"Apache-2.0"
] | null | null | null | tensorflow_probability/python/math/linalg_test.py | timudk/probability | 8bdbf1c0b0f801edaf342f4ffc9caf1cfd6f1103 | [
"Apache-2.0"
] | null | null | null | # Copyright 2018 The TensorFlow Probability Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tests for linear algebra."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Dependency imports
from absl.testing import parameterized
import hypothesis as hp
from hypothesis import strategies as hps
from hypothesis.extra import numpy as hpnp
import numpy as np
import tensorflow.compat.v1 as tf1
import tensorflow.compat.v2 as tf
import tensorflow_probability as tfp
from tensorflow_probability.python.internal import test_util as tfp_test_util
from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top
class _PinvTest(object):
def expected_pinv(self, a, rcond):
"""Calls `np.linalg.pinv` but corrects its broken batch semantics."""
if a.ndim < 3:
return np.linalg.pinv(a, rcond)
if rcond is None:
rcond = 10. * max(a.shape[-2], a.shape[-1]) * np.finfo(a.dtype).eps
s = np.concatenate([a.shape[:-2], [a.shape[-1], a.shape[-2]]])
a_pinv = np.zeros(s, dtype=a.dtype)
for i in np.ndindex(a.shape[:(a.ndim - 2)]):
a_pinv[i] = np.linalg.pinv(
a[i],
rcond=rcond if isinstance(rcond, float) else rcond[i])
return a_pinv
def test_symmetric(self):
a_ = self.dtype([[1., .4, .5],
[.4, .2, .25],
[.5, .25, .35]])
a_ = np.stack([a_ + 1., a_], axis=0) # Batch of matrices.
a = tf1.placeholder_with_default(
a_, shape=a_.shape if self.use_static_shape else None)
if self.use_default_rcond:
rcond = None
else:
rcond = self.dtype([0., 0.01]) # Smallest 1 component is forced to zero.
expected_a_pinv_ = self.expected_pinv(a_, rcond)
a_pinv = tfp.math.pinv(a, rcond, validate_args=True)
a_pinv_ = self.evaluate(a_pinv)
self.assertAllClose(expected_a_pinv_, a_pinv_,
atol=1e-5, rtol=1e-5)
if not self.use_static_shape:
return
self.assertAllEqual(expected_a_pinv_.shape, a_pinv.shape)
def test_nonsquare(self):
a_ = self.dtype([[1., .4, .5, 1.],
[.4, .2, .25, 2.],
[.5, .25, .35, 3.]])
a_ = np.stack([a_ + 0.5, a_], axis=0) # Batch of matrices.
a = tf1.placeholder_with_default(
a_, shape=a_.shape if self.use_static_shape else None)
if self.use_default_rcond:
rcond = None
else:
# Smallest 2 components are forced to zero.
rcond = self.dtype([0., 0.25])
expected_a_pinv_ = self.expected_pinv(a_, rcond)
a_pinv = tfp.math.pinv(a, rcond, validate_args=True)
a_pinv_ = self.evaluate(a_pinv)
self.assertAllClose(expected_a_pinv_, a_pinv_,
atol=1e-5, rtol=1e-4)
if not self.use_static_shape:
return
self.assertAllEqual(expected_a_pinv_.shape, a_pinv.shape)
@test_util.run_all_in_graph_and_eager_modes
class PinvTestDynamic32DefaultRcond(tf.test.TestCase, _PinvTest):
dtype = np.float32
use_static_shape = False
use_default_rcond = True
@test_util.run_all_in_graph_and_eager_modes
class PinvTestStatic64DefaultRcond(tf.test.TestCase, _PinvTest):
dtype = np.float64
use_static_shape = True
use_default_rcond = True
@test_util.run_all_in_graph_and_eager_modes
class PinvTestDynamic32CustomtRcond(tf.test.TestCase, _PinvTest):
dtype = np.float32
use_static_shape = False
use_default_rcond = False
@test_util.run_all_in_graph_and_eager_modes
class PinvTestStatic64CustomRcond(tf.test.TestCase, _PinvTest):
dtype = np.float64
use_static_shape = True
use_default_rcond = False
class _CholeskyExtend(tf.test.TestCase):
def testCholeskyExtension(self):
xs = np.random.random(7).astype(self.dtype)[:, tf.newaxis]
xs = tf1.placeholder_with_default(
xs, shape=xs.shape if self.use_static_shape else None)
k = tfp.positive_semidefinite_kernels.MaternOneHalf()
mat = k.matrix(xs, xs)
chol = tf.linalg.cholesky(mat)
ys = np.random.random(3).astype(self.dtype)[:, tf.newaxis]
ys = tf1.placeholder_with_default(
ys, shape=ys.shape if self.use_static_shape else None)
xsys = tf.concat([xs, ys], 0)
new_chol_expected = tf.linalg.cholesky(k.matrix(xsys, xsys))
new_chol = tfp.math.cholesky_concat(chol, k.matrix(xsys, ys))
self.assertAllClose(new_chol_expected, new_chol)
@hp.given(hps.data())
@hp.settings(deadline=None, max_examples=10,
derandomize=tfp_test_util.derandomize_hypothesis())
def testCholeskyExtensionRandomized(self, data):
jitter = lambda n: tf.linalg.eye(n, dtype=self.dtype) * 1e-5
target_bs = data.draw(hpnp.array_shapes())
prev_bs, new_bs = data.draw(tfp_test_util.broadcasting_shapes(target_bs, 2))
ones = tf.TensorShape([1] * len(target_bs))
smallest_shared_shp = tuple(np.min(
[tf.broadcast_static_shape(ones, shp).as_list()
for shp in [prev_bs, new_bs]],
axis=0))
z = data.draw(hps.integers(min_value=1, max_value=12))
n = data.draw(hps.integers(min_value=0, max_value=z - 1))
m = z - n
np.random.seed(data.draw(hps.integers(min_value=0, max_value=2**32 - 1)))
xs = np.random.uniform(size=smallest_shared_shp + (n,))
data.draw(hps.just(xs))
xs = (xs + np.zeros(prev_bs.as_list() + [n]))[..., np.newaxis]
xs = xs.astype(self.dtype)
xs = tf1.placeholder_with_default(
xs, shape=xs.shape if self.use_static_shape else None)
k = tfp.positive_semidefinite_kernels.MaternOneHalf()
mat = k.matrix(xs, xs) + jitter(n)
chol = tf.linalg.cholesky(mat)
ys = np.random.uniform(size=smallest_shared_shp + (m,))
data.draw(hps.just(ys))
ys = (ys + np.zeros(new_bs.as_list() + [m]))[..., np.newaxis]
ys = ys.astype(self.dtype)
ys = tf1.placeholder_with_default(
ys, shape=ys.shape if self.use_static_shape else None)
xsys = tf.concat([xs + tf.zeros(target_bs + (n, 1), dtype=self.dtype),
ys + tf.zeros(target_bs + (m, 1), dtype=self.dtype)],
axis=-2)
new_chol_expected = tf.linalg.cholesky(k.matrix(xsys, xsys) + jitter(z))
new_chol = tfp.math.cholesky_concat(
chol, k.matrix(xsys, ys) + jitter(z)[:, n:])
self.assertAllClose(new_chol_expected, new_chol, rtol=1e-5, atol=1e-5)
@test_util.run_all_in_graph_and_eager_modes
class CholeskyExtend32Static(_CholeskyExtend):
dtype = np.float32
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class CholeskyExtend64Dynamic(_CholeskyExtend):
dtype = np.float64
use_static_shape = False
del _CholeskyExtend
class _PivotedCholesky(tf.test.TestCase, parameterized.TestCase):
def _random_batch_psd(self, dim):
matrix = np.random.random([2, dim, dim])
matrix = np.matmul(matrix, np.swapaxes(matrix, -2, -1))
matrix = (matrix + np.diag(np.arange(dim) * .1)).astype(self.dtype)
masked_shape = (
matrix.shape if self.use_static_shape else [None] * len(matrix.shape))
matrix = tf1.placeholder_with_default(matrix, shape=masked_shape)
return matrix
def testPivotedCholesky(self):
dim = 11
matrix = self._random_batch_psd(dim)
true_diag = tf.linalg.diag_part(matrix)
pchol = tfp.math.pivoted_cholesky(matrix, max_rank=1)
mat = tf.matmul(pchol, pchol, transpose_b=True)
diag_diff_prev = self.evaluate(tf.abs(tf.linalg.diag_part(mat) - true_diag))
diff_norm_prev = self.evaluate(
tf.linalg.norm(tensor=mat - matrix, ord='fro', axis=[-1, -2]))
for rank in range(2, dim + 1):
# Specifying diag_rtol forces the full max_rank decomposition.
pchol = tfp.math.pivoted_cholesky(matrix, max_rank=rank, diag_rtol=-1)
zeros_per_col = dim - tf.math.count_nonzero(pchol, axis=-2)
mat = tf.matmul(pchol, pchol, transpose_b=True)
pchol_shp, diag_diff, diff_norm, zeros_per_col = self.evaluate([
tf.shape(pchol),
tf.abs(tf.linalg.diag_part(mat) - true_diag),
tf.linalg.norm(tensor=mat - matrix, ord='fro', axis=[-1, -2]),
zeros_per_col
])
self.assertAllEqual([2, dim, rank], pchol_shp)
self.assertAllEqual(
np.ones([2, rank], dtype=np.bool), zeros_per_col >= np.arange(rank))
self.assertAllLessEqual(diag_diff - diag_diff_prev,
np.finfo(self.dtype).resolution)
self.assertAllLessEqual(diff_norm - diff_norm_prev,
np.finfo(self.dtype).resolution)
diag_diff_prev, diff_norm_prev = diag_diff, diff_norm
def testGradient(self):
dim = 11
matrix = self._random_batch_psd(dim)
_, dmatrix = tfp.math.value_and_gradient(
lambda matrix: tfp.math.pivoted_cholesky(matrix, max_rank=dim // 3),
matrix)
self.assertIsNotNone(dmatrix)
self.assertAllGreater(
tf.linalg.norm(tensor=dmatrix, ord='fro', axis=[-1, -2]), 0.)
@test_util.enable_control_flow_v2
def testGradientTapeCFv2(self):
dim = 11
matrix = self._random_batch_psd(dim)
with tf.GradientTape() as tape:
tape.watch(matrix)
pchol = tfp.math.pivoted_cholesky(matrix, max_rank=dim // 3)
dmatrix = tape.gradient(
pchol, matrix, output_gradients=tf.ones_like(pchol) * .01)
self.assertIsNotNone(dmatrix)
self.assertAllGreater(
tf.linalg.norm(tensor=dmatrix, ord='fro', axis=[-1, -2]), 0.)
# pyformat: disable
@parameterized.parameters(
# Inputs are randomly shuffled arange->tril; outputs from gpytorch.
(
np.array([
[7., 0, 0, 0, 0, 0],
[9, 13, 0, 0, 0, 0],
[4, 10, 6, 0, 0, 0],
[18, 1, 2, 14, 0, 0],
[5, 11, 20, 3, 17, 0],
[19, 12, 16, 15, 8, 21]
]),
np.array([
[3.4444, -1.3545, 4.084, 1.7674, -1.1789, 3.7562],
[8.4685, 1.2821, 3.1179, 12.9197, 0.0000, 0.0000],
[7.5621, 4.8603, 0.0634, 7.3942, 4.0637, 0.0000],
[15.435, -4.8864, 16.2137, 0.0000, 0.0000, 0.0000],
[18.8535, 22.103, 0.0000, 0.0000, 0.0000, 0.0000],
[38.6135, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]
])),
(
np.array([
[1, 0, 0],
[2, 3, 0],
[4, 5, 6.]
]),
np.array([
[0.4558, 0.3252, 0.8285],
[2.6211, 2.4759, 0.0000],
[8.7750, 0.0000, 0.0000]
])),
(
np.array([
[6, 0, 0],
[3, 2, 0],
[4, 1, 5.]
]),
np.array([
[3.7033, 4.7208, 0.0000],
[2.1602, 2.1183, 1.9612],
[6.4807, 0.0000, 0.0000]
])))
# pyformat: enable
def testOracleExamples(self, mat, oracle_pchol):
mat = np.matmul(mat, mat.T)
for rank in range(1, mat.shape[-1] + 1):
self.assertAllClose(
oracle_pchol[..., :rank],
tfp.math.pivoted_cholesky(mat, max_rank=rank, diag_rtol=-1),
atol=1e-4)
@test_util.run_all_in_graph_and_eager_modes
class PivotedCholesky32Static(_PivotedCholesky):
dtype = np.float32
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class PivotedCholesky64Dynamic(_PivotedCholesky):
dtype = np.float64
use_static_shape = False
del _PivotedCholesky
def make_tensor_hiding_attributes(value, hide_shape, hide_value=True):
if not hide_value:
return tf.convert_to_tensor(value=value)
shape = None if hide_shape else getattr(value, 'shape', None)
return tf1.placeholder_with_default(value, shape=shape)
class _LUReconstruct(object):
dtype = np.float32
use_static_shape = True
def test_non_batch(self):
x_ = np.array(
[[3, 4], [1, 2]],
dtype=self.dtype)
x = tf1.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
y = tfp.math.lu_reconstruct(*tf.linalg.lu(x), validate_args=True)
y_ = self.evaluate(y)
if self.use_static_shape:
self.assertAllEqual(x_.shape, y.shape)
self.assertAllClose(x_, y_, atol=0., rtol=1e-3)
def test_batch(self):
x_ = np.array(
[
[[3, 4], [1, 2]],
[[7, 8], [3, 4]],
],
dtype=self.dtype)
x = tf1.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
y = tfp.math.lu_reconstruct(*tf.linalg.lu(x), validate_args=True)
y_ = self.evaluate(y)
if self.use_static_shape:
self.assertAllEqual(x_.shape, y.shape)
self.assertAllClose(x_, y_, atol=0., rtol=1e-3)
@test_util.run_all_in_graph_and_eager_modes
class LUReconstructStatic(tf.test.TestCase, _LUReconstruct):
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class LUReconstructDynamic(tf.test.TestCase, _LUReconstruct):
use_static_shape = False
class _LUMatrixInverse(object):
dtype = np.float32
use_static_shape = True
def test_non_batch(self):
x_ = np.array([[1, 2], [3, 4]], dtype=self.dtype)
x = tf1.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
y = tfp.math.lu_matrix_inverse(*tf.linalg.lu(x), validate_args=True)
y_ = self.evaluate(y)
if self.use_static_shape:
self.assertAllEqual(x_.shape, y.shape)
self.assertAllClose(np.linalg.inv(x_), y_, atol=0., rtol=1e-3)
def test_batch(self):
x_ = np.array(
[
[[1, 2],
[3, 4]],
[[7, 8],
[3, 4]],
[[0.25, 0.5],
[0.75, -2.]],
],
dtype=self.dtype)
x = tf1.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
y = tfp.math.lu_matrix_inverse(*tf.linalg.lu(x), validate_args=True)
y_ = self.evaluate(y)
if self.use_static_shape:
self.assertAllEqual(x_.shape, y.shape)
self.assertAllClose(np.linalg.inv(x_), y_, atol=0., rtol=1e-3)
@test_util.run_all_in_graph_and_eager_modes
class LUMatrixInverseStatic(tf.test.TestCase, _LUMatrixInverse):
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class LUMatrixInverseDynamic(tf.test.TestCase, _LUMatrixInverse):
use_static_shape = False
class _LUSolve(object):
dtype = np.float32
use_static_shape = True
def test_non_batch(self):
x_ = np.array(
[[1, 2],
[3, 4]],
dtype=self.dtype)
x = tf1.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
rhs_ = np.array([[1, 1]], dtype=self.dtype).T
rhs = tf1.placeholder_with_default(
rhs_, shape=rhs_.shape if self.use_static_shape else None)
lower_upper, perm = tf.linalg.lu(x)
y = tfp.math.lu_solve(lower_upper, perm, rhs, validate_args=True)
y_, perm_ = self.evaluate([y, perm])
self.assertAllEqual([1, 0], perm_)
expected_ = np.linalg.solve(x_, rhs_)
if self.use_static_shape:
self.assertAllEqual(expected_.shape, y.shape)
self.assertAllClose(expected_, y_, atol=0., rtol=1e-3)
def test_batch_broadcast(self):
x_ = np.array(
[
[[1, 2],
[3, 4]],
[[7, 8],
[3, 4]],
[[0.25, 0.5],
[0.75, -2.]],
],
dtype=self.dtype)
x = tf1.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
rhs_ = np.array([[1, 1]], dtype=self.dtype).T
rhs = tf1.placeholder_with_default(
rhs_, shape=rhs_.shape if self.use_static_shape else None)
lower_upper, perm = tf.linalg.lu(x)
y = tfp.math.lu_solve(lower_upper, perm, rhs, validate_args=True)
y_, perm_ = self.evaluate([y, perm])
self.assertAllEqual([[1, 0],
[0, 1],
[1, 0]], perm_)
expected_ = np.linalg.solve(x_, rhs_[np.newaxis])
if self.use_static_shape:
self.assertAllEqual(expected_.shape, y.shape)
self.assertAllClose(expected_, y_, atol=0., rtol=1e-3)
@test_util.run_all_in_graph_and_eager_modes
class LUSolveStatic(tf.test.TestCase, _LUSolve):
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class LUSolveDynamic(tf.test.TestCase, _LUSolve):
use_static_shape = False
class _SparseOrDenseMatmul(object):
dtype = np.float32
use_static_shape = True
use_sparse_tensor = False
def _make_placeholder(self, x):
return tf1.placeholder_with_default(
x, shape=(x.shape if self.use_static_shape else None))
def _make_sparse_placeholder(self, x):
indices_placeholder = self._make_placeholder(x.indices)
values_placeholder = self._make_placeholder(x.values)
if self.use_static_shape:
dense_shape_placeholder = x.dense_shape
else:
dense_shape_placeholder = self._make_placeholder(x.dense_shape)
return tf.SparseTensor(
indices=indices_placeholder,
values=values_placeholder,
dense_shape=dense_shape_placeholder)
def verify_sparse_dense_matmul(self, x_, y_):
if self.use_sparse_tensor:
x = self._make_sparse_placeholder(tfp.math.dense_to_sparse(x_))
else:
x = self._make_placeholder(x_)
y = self._make_placeholder(y_)
z = tfp.math.sparse_or_dense_matmul(x, y)
z_ = self.evaluate(z)
if self.use_static_shape:
batch_shape = x_.shape[:-2]
self.assertAllEqual(z_.shape, batch_shape + (x_.shape[-2], y_.shape[-1]))
self.assertAllClose(z_, np.matmul(x_, y_), atol=0., rtol=1e-3)
def verify_sparse_dense_matvecmul(self, x_, y_):
if self.use_sparse_tensor:
x = self._make_sparse_placeholder(tfp.math.dense_to_sparse(x_))
else:
x = self._make_placeholder(x_)
y = self._make_placeholder(y_)
z = tfp.math.sparse_or_dense_matvecmul(x, y)
z_ = self.evaluate(z)
if self.use_static_shape:
batch_shape = x_.shape[:-2]
self.assertAllEqual(z_.shape, batch_shape + (x_.shape[-2],))
self.assertAllClose(
z_[..., np.newaxis],
np.matmul(x_, y_[..., np.newaxis]),
atol=0.,
rtol=1e-3)
def test_non_batch_matmul(self):
x_ = np.array([[3, 4, 0], [1, 0, 3]], dtype=self.dtype)
y_ = np.array([[1, 0], [9, 0], [3, 1]], dtype=self.dtype)
self.verify_sparse_dense_matmul(x_, y_)
def test_non_batch_matvecmul(self):
x_ = np.array([[3, 0, 5], [0, 2, 3]], dtype=self.dtype)
y_ = np.array([1, 0, 9], dtype=self.dtype)
self.verify_sparse_dense_matvecmul(x_, y_)
def test_batch_matmul(self):
x_ = np.array([
[[3, 4, 0], [1, 0, 3]],
[[6, 0, 0], [0, 0, 0]],
],
dtype=self.dtype)
y_ = np.array([
[[1, 0], [9, 0], [3, 1]],
[[2, 2], [5, 6], [0, 1]],
],
dtype=self.dtype)
self.verify_sparse_dense_matmul(x_, y_)
def test_batch_matvecmul(self):
x_ = np.array([
[[3, 0, 5], [0, 2, 3]],
[[1, 1, 0], [6, 0, 0]],
],
dtype=self.dtype)
y_ = np.array([
[1, 0, 9],
[0, 0, 2],
], dtype=self.dtype)
self.verify_sparse_dense_matvecmul(x_, y_)
@test_util.run_all_in_graph_and_eager_modes
class SparseOrDenseMatmulStatic(tf.test.TestCase, _SparseOrDenseMatmul):
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class SparseOrDenseMatmulDynamic(tf.test.TestCase, _SparseOrDenseMatmul):
use_static_shape = False
@test_util.run_all_in_graph_and_eager_modes
class SparseOrDenseMatmulStaticSparse(tf.test.TestCase, _SparseOrDenseMatmul):
use_static_shape = True
use_sparse_tensor = True
@test_util.run_all_in_graph_and_eager_modes
class SparseOrDenseMatmulDynamicSparse(tf.test.TestCase, _SparseOrDenseMatmul):
use_static_shape = False
use_sparse_tensor = True
class _MatrixRankTest(object):
def test_batch_default_tolerance(self):
x_ = np.array([[[2, 3, -2], # = row2+row3
[-1, 1, -2],
[3, 2, 0]],
[[0, 2, 0], # = 2*row2
[0, 1, 0],
[0, 3, 0]], # = 3*row2
[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]],
self.dtype)
x = tf1.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
self.assertAllEqual([2, 1, 3], self.evaluate(tfp.math.matrix_rank(x)))
def test_custom_tolerance_broadcasts(self):
q = tf.linalg.qr(tf.random.uniform([3, 3], dtype=self.dtype))[0]
e = tf.constant([0.1, 0.2, 0.3], dtype=self.dtype)
a = tf.linalg.solve(q, tf.transpose(a=e * q), adjoint=True)
self.assertAllEqual([3, 2, 1, 0], self.evaluate(tfp.math.matrix_rank(
a, tol=[[0.09], [0.19], [0.29], [0.31]])))
def test_nonsquare(self):
x_ = np.array([[[2, 3, -2, 2], # = row2+row3
[-1, 1, -2, 4],
[3, 2, 0, -2]],
[[0, 2, 0, 6], # = 2*row2
[0, 1, 0, 3],
[0, 3, 0, 9]]], # = 3*row2
self.dtype)
x = tf1.placeholder_with_default(
x_, shape=x_.shape if self.use_static_shape else None)
self.assertAllEqual([2, 1], self.evaluate(tfp.math.matrix_rank(x)))
@test_util.run_all_in_graph_and_eager_modes
class MatrixRankStatic32Test(tf.test.TestCase, _MatrixRankTest):
dtype = np.float32
use_static_shape = True
@test_util.run_all_in_graph_and_eager_modes
class MatrixRankDynamic64Test(tf.test.TestCase, _MatrixRankTest):
dtype = np.float64
use_static_shape = False
@test_util.run_all_in_graph_and_eager_modes
class FillTriangularTest(tf.test.TestCase):
def _fill_triangular(self, x, upper=False):
"""Numpy implementation of `fill_triangular`."""
x = np.asarray(x)
# Formula derived by solving for n: m = n(n+1)/2.
m = np.int32(x.shape[-1])
n = np.sqrt(0.25 + 2. * m) - 0.5
if n != np.floor(n):
raise ValueError('Invalid shape.')
n = np.int32(n)
# We can't do: `x[..., -(n**2-m):]` because this doesn't correctly handle
# `m == n == 1`. Hence, we do absolute indexing.
x_tail = x[..., (m - (n * n - m)):]
y = np.concatenate(
[x, x_tail[..., ::-1]] if upper else [x_tail, x[..., ::-1]],
axis=-1)
y = y.reshape(np.concatenate([
np.int32(x.shape[:-1]),
np.int32([n, n]),
], axis=0))
return np.triu(y) if upper else np.tril(y)
def _run_test(self, x_, use_deferred_shape=False, **kwargs):
x_ = np.asarray(x_)
static_shape = None if use_deferred_shape else x_.shape
x_pl = tf1.placeholder_with_default(x_, shape=static_shape)
# Add `zeros_like(x)` such that x's value and gradient are identical. We
# do this so we can ensure each gradient value is mapped to the right
# gradient location. (Not doing this means the gradient wrt `x` is simple
# `ones_like(x)`.)
# Note:
# zeros_like_x_pl == zeros_like(x_pl)
# gradient(zeros_like_x_pl, x_pl) == x_pl - 1
def _zeros_like(x):
return x * tf.stop_gradient(x - 1.) - tf.stop_gradient(x * (x - 1.))
actual, grad_actual = tfp.math.value_and_gradient(
lambda x: tfp.math.fill_triangular( # pylint: disable=g-long-lambda
x + _zeros_like(x), **kwargs),
x_pl)
actual_, grad_actual_ = self.evaluate([actual, grad_actual])
expected = self._fill_triangular(x_, **kwargs)
if use_deferred_shape and not tf.executing_eagerly():
self.assertEqual(None, actual.shape)
else:
self.assertAllEqual(expected.shape, actual.shape)
self.assertAllClose(expected, actual_, rtol=1e-8, atol=1e-9)
self.assertAllClose(x_, grad_actual_, rtol=1e-8, atol=1e-9)
def testCorrectlyMakes1x1TriLower(self):
self._run_test(np.random.randn(3, int(1*2/2)))
def testCorrectlyMakesNoBatchTriLower(self):
self._run_test(np.random.randn(int(4*5/2)))
def testCorrectlyMakesBatchTriLower(self):
self._run_test(np.random.randn(2, 3, int(3*4/2)))
def testCorrectlyMakesBatchTriLowerUnknownShape(self):
self._run_test(np.random.randn(2, 3, int(3*4/2)), use_deferred_shape=True)
def testCorrectlyMakesBatch7x7TriLowerUnknownShape(self):
self._run_test(np.random.randn(2, 3, int(7*8/2)), use_deferred_shape=True)
def testCorrectlyMakesBatch7x7TriLower(self):
self._run_test(np.random.randn(2, 3, int(7*8/2)))
def testCorrectlyMakes1x1TriUpper(self):
self._run_test(np.random.randn(3, int(1*2/2)), upper=True)
def testCorrectlyMakesNoBatchTriUpper(self):
self._run_test(np.random.randn(int(4*5/2)), upper=True)
def testCorrectlyMakesBatchTriUpper(self):
self._run_test(np.random.randn(2, 2, int(3*4/2)), upper=True)
def testCorrectlyMakesBatchTriUpperUnknownShape(self):
self._run_test(np.random.randn(2, 2, int(3*4/2)),
use_deferred_shape=True,
upper=True)
def testCorrectlyMakesBatch7x7TriUpperUnknownShape(self):
self._run_test(np.random.randn(2, 3, int(7*8/2)),
use_deferred_shape=True,
upper=True)
def testCorrectlyMakesBatch7x7TriUpper(self):
self._run_test(np.random.randn(2, 3, int(7*8/2)), upper=True)
@test_util.run_all_in_graph_and_eager_modes
class FillTriangularInverseTest(FillTriangularTest):
def _run_test(self, x_, use_deferred_shape=False, **kwargs):
x_ = np.asarray(x_)
static_shape = None if use_deferred_shape else x_.shape
x_pl = tf1.placeholder_with_default(x_, shape=static_shape)
zeros_like_x_pl = (x_pl * tf.stop_gradient(x_pl - 1.)
- tf.stop_gradient(x_pl * (x_pl - 1.)))
x = x_pl + zeros_like_x_pl
actual = tfp.math.fill_triangular(x, **kwargs)
inverse_actual = tfp.math.fill_triangular_inverse(actual, **kwargs)
inverse_actual_ = self.evaluate(inverse_actual)
if use_deferred_shape and not tf.executing_eagerly():
self.assertEqual(None, inverse_actual.shape)
else:
self.assertAllEqual(x_.shape, inverse_actual.shape)
self.assertAllEqual(x_, inverse_actual_)
if __name__ == '__main__':
tf.test.main()
| 33.872774 | 115 | 0.644231 |
bf628907100ed45f03c6ba2481f962223005d12b | 1,945 | py | Python | tests/functional/python_tests/cli_wallet/tests/009_get_open_orders.py | drov0/hive | 747380ac6d1d621a99c94ccf3fd24bbece754a57 | [
"MIT"
] | 283 | 2020-03-20T02:13:12.000Z | 2022-03-31T22:40:07.000Z | tests/functional/python_tests/cli_wallet/tests/009_get_open_orders.py | drov0/hive | 747380ac6d1d621a99c94ccf3fd24bbece754a57 | [
"MIT"
] | 19 | 2020-03-20T03:09:16.000Z | 2021-08-28T22:35:09.000Z | tests/functional/python_tests/cli_wallet/tests/009_get_open_orders.py | drov0/hive | 747380ac6d1d621a99c94ccf3fd24bbece754a57 | [
"MIT"
] | 94 | 2020-03-20T01:53:05.000Z | 2022-03-04T11:08:23.000Z | #!/usr/bin/python3
import time
from utils.test_utils import *
from utils.cmd_args import args
from utils.cli_wallet import CliWallet
from utils.logger import log, init_logger
if __name__ == "__main__":
with Test(__file__):
with CliWallet( args ) as wallet:
creator, user = make_user_for_tests(wallet)
result_before = wallet.get_open_orders(user)['result']
assert(len(result_before) == 0)
log.info( "testing buy order :10.000 TESTS for 1000.000 TBD created by user {}".format( user ) )
wallet.create_order(user, "1", "10.000 TESTS", "1000.000 TBD", "false", "9999", "true")
result_sell = wallet.get_open_orders(user)['result']
assert(len(result_sell) == 1)
assert(result_sell[0]['orderid'] == 1)
assert(result_sell[0]['seller'] == user)
assert(result_sell[0]['for_sale'] == 10000)
assert(result_sell[0]['real_price'] == '100.00000000000000000')
assert(result_sell[0]['sell_price']['base'] == '10.000 TESTS')
assert(result_sell[0]['sell_price']['quote'] == '1000.000 TBD')
assert(not result_sell[0]['rewarded'])
log.info( "testing buy order :10.000 TBD for 1000.000 TESTS created by user {}".format( user ) )
wallet.create_order(user, "2", "10.000 TBD", "1000.000 TESTS", "false", "9999", "true")
result_buy = wallet.get_open_orders(user)['result']
assert(len(result_buy) == 2)
assert(result_buy[1]['orderid'] == 2)
assert(result_buy[1]['seller'] == user)
assert(result_buy[1]['for_sale'] == 10000)
assert(result_buy[1]['real_price'] == '0.01000000000000000')
assert(result_buy[1]['sell_price']['base'] == '10.000 TBD')
assert(result_buy[1]['sell_price']['quote'] == '1000.000 TESTS')
assert(not result_buy[1]['rewarded'])
| 47.439024 | 108 | 0.597943 |
29e2d85ba89fbd087f080618a4c9b26454eeac13 | 5,258 | py | Python | flsim/utils/tests/test_training_time_estimator.py | JohnlNguyen/FLSim | a5ed7c0b84499cd9dbc5fe95f8bcb4ba8ab5a5cb | [
"BSD-3-Clause"
] | 79 | 2021-12-09T18:05:09.000Z | 2022-03-23T20:43:46.000Z | flsim/utils/tests/test_training_time_estimator.py | JohnlNguyen/FLSim | a5ed7c0b84499cd9dbc5fe95f8bcb4ba8ab5a5cb | [
"BSD-3-Clause"
] | 11 | 2021-12-30T17:54:04.000Z | 2022-03-23T17:23:00.000Z | flsim/utils/tests/test_training_time_estimator.py | JohnlNguyen/FLSim | a5ed7c0b84499cd9dbc5fe95f8bcb4ba8ab5a5cb | [
"BSD-3-Clause"
] | 9 | 2021-12-09T19:55:22.000Z | 2022-03-15T00:02:08.000Z | #!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import torch
from flsim.common.pytest_helper import assertEqual, assertAlmostEqual
from flsim.utils.timing.training_duration_distribution import (
PerUserUniformDurationDistribution,
PerUserUniformDurationDistributionConfig,
PerUserHalfNormalDurationDistribution,
PerUserHalfNormalDurationDistributionConfig,
DurationDistributionFromListConfig,
DurationDistributionFromList,
DurationInfo,
)
from flsim.utils.timing.training_time_estimator import (
get_training_time,
AsyncTrainingTimeEstimator,
SyncTrainingTimeEstimator,
)
from omegaconf import OmegaConf
class TestTrainingTimeEstimator:
def test_time_from_list(self) -> None:
"""
Test training time from list
Assuming UPR = 2
Sync would be the sum of slowest user between rounds
round 1
user_1: duration = 4
user_2: duration = 3
round 2
user_3: duration = 2
user_4: duration = 1
total = 4 + 2 = 6
Async would be the
user_1: duration = 4, start_time = 1
user_2: duration = 3, start_time = 1
user_3: duration = 2, start_time = 2
user_4: duration = 1, start_time = 3
users training @ time 1: user 1, user 2
users training @ time 3: user 2, user 3
users training @ time 4: user 3, user 4
users training @ time 5: user 4 finishes training
"""
training_events = [
DurationInfo(duration=4),
DurationInfo(duration=3),
DurationInfo(duration=2),
DurationInfo(duration=1),
]
async_start_times = [1, 1, 2, 3]
sync_training_dist = DurationDistributionFromList(
**OmegaConf.structured(
DurationDistributionFromListConfig(training_events=training_events)
)
)
async_training_dist = DurationDistributionFromList(
**OmegaConf.structured(
DurationDistributionFromListConfig(training_events=training_events)
)
)
num_users = len(training_events)
epochs = 1
users_per_round = 2
sync_estimator = SyncTrainingTimeEstimator(
total_users=len(training_events),
users_per_round=users_per_round,
epochs=epochs,
training_dist=sync_training_dist,
)
async_estimator = AsyncTrainingTimeEstimator(
total_users=num_users,
users_per_round=users_per_round,
epochs=epochs,
training_dist=async_training_dist,
start_times=async_start_times,
)
async_time = async_estimator.training_time()
sync_time = sync_estimator.training_time()
assertEqual(sync_time, 6)
assertEqual(async_time, 5)
def test_uniform_training_time(self) -> None:
"""
Test uniform training time
Sync and Async should have the same training time if
UPR = 1 and duration_min close to duration_mean
"""
torch.manual_seed(0)
num_users = 1000
epochs = 1
users_per_round = 1
duration_mean = 1.00
duration_min = 0.99999
training_dist = PerUserUniformDurationDistribution(
**OmegaConf.structured(
PerUserUniformDurationDistributionConfig(
training_duration_mean=duration_mean,
training_duration_min=duration_min,
)
)
)
sync_time, async_time = get_training_time(
num_users=num_users,
users_per_round=users_per_round,
epochs=epochs,
training_dist=training_dist,
)
assertAlmostEqual(sync_time, async_time, delta=1e-3)
def test_per_user_half_normal(self) -> None:
"""
Test half normal training time
Sync and Async should have the following training time
sync_training_time = async_training_time = num_users * duration_min
if UPR = 1 and duraton_std is close to 0
"""
torch.manual_seed(0)
num_users = 1000
epochs = 1
users_per_round = 1
duration_std = 1e-6
duration_min = 1.0
training_dist = PerUserHalfNormalDurationDistribution(
**OmegaConf.structured(
PerUserHalfNormalDurationDistributionConfig(
training_duration_sd=duration_std,
training_duration_min=duration_min,
)
)
)
sync_time, async_time = get_training_time(
num_users=num_users,
users_per_round=users_per_round,
epochs=epochs,
training_dist=training_dist,
)
assertAlmostEqual(sync_time, async_time, delta=1e-3)
assertAlmostEqual(sync_time, num_users * duration_min, delta=1e-3)
assertAlmostEqual(async_time, num_users * duration_min, delta=1e-3)
| 32.257669 | 83 | 0.625333 |
ce94faadb39823e06566cf7c720f348a448bb628 | 1,470 | py | Python | nicos_demo/vsans1/setups/pressure.py | ebadkamil/nicos | 0355a970d627aae170c93292f08f95759c97f3b5 | [
"CC-BY-3.0",
"Apache-2.0",
"CC-BY-4.0"
] | 12 | 2019-11-06T15:40:36.000Z | 2022-01-01T16:23:00.000Z | nicos_demo/vsans1/setups/pressure.py | ebadkamil/nicos | 0355a970d627aae170c93292f08f95759c97f3b5 | [
"CC-BY-3.0",
"Apache-2.0",
"CC-BY-4.0"
] | 91 | 2020-08-18T09:20:26.000Z | 2022-02-01T11:07:14.000Z | nicos_demo/vsans1/setups/pressure.py | ISISComputingGroup/nicos | 94cb4d172815919481f8c6ee686f21ebb76f2068 | [
"CC-BY-3.0",
"Apache-2.0",
"CC-BY-4.0"
] | 6 | 2020-01-11T10:52:30.000Z | 2022-02-25T12:35:23.000Z | description = 'Vacuum sensors of detector and collimation tube'
group = 'lowlevel'
devices = dict(
det_tube = device('nicos.devices.generic.ManualMove',
description = 'pressure detector tube: Tube',
abslimits = (0, 1000),
fmtstr = '%.4G',
pollinterval = 15,
maxage = 60,
lowlevel = True,
unit = 'mbar',
),
det_nose = device('nicos.devices.generic.ManualMove',
description = 'pressure detector tube: Nose',
abslimits = (0, 1000),
fmtstr = '%.4G',
pollinterval = 15,
maxage = 60,
lowlevel = True,
unit = 'mbar',
),
coll_tube = device('nicos.devices.generic.ManualMove',
description = 'pressure collimation tube: Tube',
abslimits = (0, 1000),
fmtstr = '%.4G',
pollinterval = 15,
maxage = 60,
lowlevel = True,
unit = 'mbar',
),
coll_nose = device('nicos.devices.generic.ManualMove',
description = 'pressure collimation tube: Nose',
abslimits = (0, 1000),
fmtstr = '%.4G',
pollinterval = 15,
maxage = 60,
lowlevel = True,
unit = 'mbar',
),
coll_pump = device('nicos.devices.generic.ManualMove',
description = 'pressure collimation tube: Pump',
abslimits = (0, 1000),
fmtstr = '%.4G',
pollinterval = 15,
maxage = 60,
lowlevel = True,
unit = 'mbar',
),
)
| 28.269231 | 63 | 0.542857 |
0433d8a6fe3adde21da874f20482a09af670d149 | 3,366 | py | Python | neurolang/utils/testing/logic.py | hndgzkn/NeuroLang | a3178d47f80bc0941440d9bb09e06c2f217b9566 | [
"BSD-3-Clause"
] | 1 | 2021-01-07T02:00:22.000Z | 2021-01-07T02:00:22.000Z | neurolang/utils/testing/logic.py | hndgzkn/NeuroLang | a3178d47f80bc0941440d9bb09e06c2f217b9566 | [
"BSD-3-Clause"
] | 207 | 2020-11-04T12:51:10.000Z | 2022-03-30T13:42:26.000Z | neurolang/utils/testing/logic.py | hndgzkn/NeuroLang | a3178d47f80bc0941440d9bb09e06c2f217b9566 | [
"BSD-3-Clause"
] | 6 | 2020-11-04T13:59:35.000Z | 2021-03-19T05:28:10.000Z | """
This module exposes utility functions for tests on logic expressions.
It should not be used for any other purpose than testing.
"""
from ...expression_pattern_matching import add_match
from ...expression_walker import ExpressionWalker
from ...expressions import Definition, Expression
from ...logic import NaryLogicOperator
__all__ = [
"logic_exp_commutative_equal",
]
class LogicCommutativeComparison(Definition):
"""
Comparison between two expressions that uses the commutativity property of
some logic operators such as conjunctions and disjunctions.
Parameters
----------
first : Expression
First expression.
second : Expression
Second expression.
"""
def __init__(self, first, second):
self.first = first
self.second = second
def __repr__(self):
return "Compare\n\t{}\nwith\n\t{}".format(
repr(self.first), repr(self.second)
)
class LogicCommutativeComparator(ExpressionWalker):
"""
Compare logic expressions using the commutativity property of some logic
operators such as conjunctions and disjunctions.
"""
@add_match(
LogicCommutativeComparison(NaryLogicOperator, NaryLogicOperator)
)
def nary_logic_operators(self, comp):
"""
Compare two n-ary logic operators by comparing their two sets of
formulas.
"""
if not isinstance(comp.first, type(comp.second)) or not isinstance(
comp.second, type(comp.first)
):
return False
return self._compare_set_of_formulas(comp.first, comp.second)
@add_match(LogicCommutativeComparison(Expression, Expression))
def expressions(self, comp):
args1 = comp.first.unapply()
args2 = comp.second.unapply()
if len(args1) != len(args2):
return False
for arg1, arg2 in zip(args1, args2):
if not self._args_equal(arg1, arg2):
return False
return True
def _args_equal(self, arg1, arg2):
if isinstance(arg1, Expression) and isinstance(arg2, Expression):
if not self.walk(LogicCommutativeComparison(arg1, arg2)):
return False
elif arg1 != arg2:
return False
return True
def _compare_set_of_formulas(self, first, second):
return all(
any(
self.walk(LogicCommutativeComparison(f1, f2))
for f2 in second.formulas
)
for f1 in first.formulas
)
def logic_exp_commutative_equal(exp1, exp2):
"""
Compare two expressions using the commutativity property of logic
operators.
The two expressions do not need to be purely equal if the order of the
formulas of a commutative logic operator is not the same in the two
expressions.
Apart from commutative logic operators, the comparison between the two
expressions remains the same as the equality comparison.
Parameters
----------
exp1 : Expression
First expression.
exp2 : Expression
Second expression.
"""
if not isinstance(exp1, Expression) or not isinstance(exp2, Expression):
raise ValueError("Can only compare expressions")
return LogicCommutativeComparator().walk(
LogicCommutativeComparison(exp1, exp2)
)
| 28.285714 | 78 | 0.655674 |
15e199b22e341cb7cab56a47709641d697da9e73 | 2,734 | py | Python | tests/test_edn.py | ciena-blueplanet/pydatomic | 6e49d5a4d9716392eaeb8647e1da21eb300d5380 | [
"MIT"
] | 56 | 2015-01-14T16:38:37.000Z | 2022-02-24T10:54:53.000Z | tests/test_edn.py | ciena-blueplanet/pydatomic | 6e49d5a4d9716392eaeb8647e1da21eb300d5380 | [
"MIT"
] | null | null | null | tests/test_edn.py | ciena-blueplanet/pydatomic | 6e49d5a4d9716392eaeb8647e1da21eb300d5380 | [
"MIT"
] | 10 | 2015-01-27T02:53:03.000Z | 2021-12-06T11:30:24.000Z | # -*- coding: utf-8 -*-
import unittest
from datetime import datetime
from uuid import UUID
from pydatomic import edn
class EdnParseTest(unittest.TestCase):
def test_all_data(self):
data = {
'"helloworld"': "helloworld",
"23": 23,
"23.11": 23.11,
"true": True,
"false": False,
"nil": None,
":hello": ":hello",
r'"string\"ing"': 'string"ing',
'"string\n"': 'string\n',
'[:hello]':(":hello",),
'-10.4':-10.4,
'"你"': u'你',
'\\€': u'€',
"[1 2]": (1, 2),
"#{true \"hello\" 12}": set([True, "hello", 12]),
'#inst "2012-09-10T23:51:55.840-00:00"': datetime(2012, 9, 10, 23, 51, 55, 840000),
"(\\a \\b \\c \\d)": ("a", "b", "c", "d"),
"{:a 1 :b 2 :c 3 :d 4}": {":a":1, ":b":2, ":c":3,":d":4},
"[1 2 3,4]": (1,2,3,4),
"{:a [1 2 3] :b #{23.1 43.1 33.1}}": {":a":(1, 2, 3), ":b":frozenset([23.1, 43.1, 33.1])},
"{:a 1 :b [32 32 43] :c 4}": {":a":1, ":b":(32,32,43), ":c":4},
"\\你": u"你",
'#db/fn{:lang "clojure" :code "(map l)"}': {':lang':u'clojure', ':code':u'(map l)'},
"#_ {[#{}] #{[]}} [23[34][32][4]]": (23, (34,), (32,), (4,)),
'(:graham/stratton true \n , "A string with \\n \\"s" true #uuid "f81d4fae7dec11d0a76500a0c91e6bf6")': (
u':graham/stratton', True, u'A string with \n "s', True, UUID('f81d4fae-7dec-11d0-a765-00a0c91e6bf6')
),
'[\space \\\xE2\x82\xAC [true []] ;true\n[true #inst "2012-09-10T23:39:43.309-00:00" true ""]]': (
' ', u'\u20ac', (True, ()), (True, datetime(2012, 9, 10, 23, 39, 43, 309000), True, '')
),
' {true false nil [true, ()] 6 {#{nil false} {nil \\newline} }}': {
None: (True, ()), True: False, 6: {frozenset([False, None]): {None: '\n'}}
},
'[#{6.22e-18, -3.1415, 1} true #graham #{"pie" "chips"} "work"]': (
frozenset([6.22e-18, -3.1415, 1]), True, u'work'
),
'(\\a .5)': (u'a', 0.5),
'(List #{[123 456 {}] {a 1 b 2 c ({}, [])}})': (
u'List', ((123, 456, {}), {u'a': 1, u'c': ({}, ()), u'b': 2})
),
}
for k, v in data.items():
self.assertEqual(edn.loads(k), v)
def test_malformed_data(self):
'''Verify ValueError() exception raise on malformed data'''
data = ["[1 2 3", "@EE", "[@nil tee]"]
for d in data:
self.assertRaises(ValueError, edn.loads, d)
if __name__ == '__main__':
unittest.main()
| 41.424242 | 117 | 0.41368 |
3ad157ffd25a76d559494e3b24db09b4d1ba2ef8 | 1,032 | py | Python | ophelia/voicerooms/config_options.py | Bunnic/Ophelia | 7a521ca8cef1e067b6e402db16911b554057ce0d | [
"MIT"
] | null | null | null | ophelia/voicerooms/config_options.py | Bunnic/Ophelia | 7a521ca8cef1e067b6e402db16911b554057ce0d | [
"MIT"
] | null | null | null | ophelia/voicerooms/config_options.py | Bunnic/Ophelia | 7a521ca8cef1e067b6e402db16911b554057ce0d | [
"MIT"
] | null | null | null | """
Voicerooms Configuration module.
Contains the options required to set up a voiceroom generator.
"""
from typing import List
from ophelia.output import ConfigItem, disp_str
from ophelia.utils.discord_utils import (
extract_category_config, extract_text_config,
extract_voice_config
)
VOICEROOMS_GENERATOR_CONFIG: List[ConfigItem] = []
for category in ["voice_category", "text_category"]:
VOICEROOMS_GENERATOR_CONFIG.append(ConfigItem(
category,
disp_str(f"voicerooms_generator_{category}"),
extract_category_config
))
for voice_channel in ["generator_channel", "sample_voice_channel"]:
VOICEROOMS_GENERATOR_CONFIG.append(ConfigItem(
voice_channel,
disp_str(f"voicerooms_generator_{voice_channel}"),
extract_voice_config
))
for text_channel in ["sample_text_channel", "log_channel"]:
VOICEROOMS_GENERATOR_CONFIG.append(ConfigItem(
text_channel,
disp_str(f"voicerooms_generator_{text_channel}"),
extract_text_config
))
| 27.157895 | 67 | 0.745155 |
17d8273c73888cc04c224429611b598d929de315 | 1,262 | py | Python | regression_test_utils/regression_test_utils.py | JivanAmara/test_utils | f077083ebdd8cbcd626ef98994c582cf585fde14 | [
"BSD-3-Clause"
] | null | null | null | regression_test_utils/regression_test_utils.py | JivanAmara/test_utils | f077083ebdd8cbcd626ef98994c582cf585fde14 | [
"BSD-3-Clause"
] | null | null | null | regression_test_utils/regression_test_utils.py | JivanAmara/test_utils | f077083ebdd8cbcd626ef98994c582cf585fde14 | [
"BSD-3-Clause"
] | null | null | null | '''
Created on Jul 29, 2015
@author: jivan
'''
import jsonpickle, logging
# PythonDecorators/my_decorator.py
class log_test_case(object):
""" @brief: Decorator to log input & output of a method as a jsonpickle'd tuple for easy
test creation.
Format of the tuple is (<method name>, <args (without self)>, <kwargs>, <result>)
@author: Jivan
@since: 2015-07-29
@change: 2015-08-03 by Jivan: Added class_name to initialization & logged output.
"""
def __init__(self, logger, class_name):
self.logger = logger
self.class_name = class_name
def __call__(self, f):
method_name = f.__name__
logger = self.logger
def wrapped_f(*args, **kwargs):
result = f(*args, **kwargs)
if logger.getEffectiveLevel() <= logging.DEBUG:
args_wo_instance = args[1:]
tc = repr(jsonpickle.encode(
(method_name, args_wo_instance, kwargs, result), keys=True
)
)
logger.debug('Decorator TestCase for "{}.{}":\n\t{}'\
.format(self.class_name, method_name, tc))
return result
return wrapped_f
| 35.055556 | 92 | 0.561014 |
095a8c4c739fb420c16da1e1ae8240d1d72e1c59 | 798 | py | Python | Python/Assignments/week3.py | aquib-sh/DSA-C-PY | 0cc9e874d5310762edd7b6c12dee07e351668c17 | [
"CC0-1.0"
] | null | null | null | Python/Assignments/week3.py | aquib-sh/DSA-C-PY | 0cc9e874d5310762edd7b6c12dee07e351668c17 | [
"CC0-1.0"
] | null | null | null | Python/Assignments/week3.py | aquib-sh/DSA-C-PY | 0cc9e874d5310762edd7b6c12dee07e351668c17 | [
"CC0-1.0"
] | null | null | null | def remdup(li):
length = len(li)
holder = []
if length <= 1:
return li
for i in range(0, length):
if i == length-1:
holder.append(li[i])
else:
if not li[i] in li[(i+1):]:
holder.append(li[i])
return holder
def splitsum(l):
pos = 0
neg = 0
for i in range(0, len(l)):
if l[i] < 0:
neg += l[i]**3
else:
pos += l[i]**2
return [pos, neg]
def matrixflip(m, d):
nm = []
if d == 'h':
for elem in m:
nm.append([elem[i] for i in range(len(elem)-1, -1, -1)])
if d == 'v':
for i in range(len(m)-1, -1, -1):
nm.append(m[i])
return nm
| 17.733333 | 68 | 0.384712 |
b0e650d33133e60c097f26b1e8671202dfc39782 | 4,133 | py | Python | api/streamlit_experiments/s3.py | aws-samples/aws-open-data-analytics-notebooks | 680e9689e1b0ceb047960662d220564ae3ecbddb | [
"Apache-2.0"
] | 70 | 2019-05-09T20:02:13.000Z | 2021-04-03T12:09:18.000Z | api/streamlit_experiments/s3.py | aws-samples/cloud-experiments | 680e9689e1b0ceb047960662d220564ae3ecbddb | [
"Apache-2.0"
] | 14 | 2021-05-15T21:14:28.000Z | 2022-03-31T09:09:11.000Z | api/streamlit_experiments/s3.py | aws-samples/aws-open-data-analytics-notebooks | 680e9689e1b0ceb047960662d220564ae3ecbddb | [
"Apache-2.0"
] | 65 | 2019-05-20T00:48:04.000Z | 2021-04-24T02:28:08.000Z | import streamlit as st
import boto3
import botocore
import pandas as pd
import io
s3_client = boto3.client('s3')
s3_resource = boto3.resource('s3')
def search_buckets():
search = st.text_input('Search S3 bucket in your account', '')
response = s3_client.list_buckets()
if search:
buckets_found = 0
for bucket in response['Buckets']:
if search:
if search in bucket["Name"]:
buckets_found = buckets_found + 1
st.write(f'{bucket["Name"]}')
if buckets_found:
st.success(f'Listing existing **{buckets_found}** buckets containing **{search}** string')
else:
st.warning(f'No matching buckets found containing **{search}** string')
else:
st.info('Provide string to search for listing buckets')
def list_bucket_contents():
total_size_gb = 0
total_files = 0
match_size_gb = 0
match_files = 0
bucket = st.text_input('S3 bucket name (public bucket or private to your account)', '')
bucket_resource = s3_resource.Bucket(bucket)
match = st.text_input('(optional) Filter bucket contents with matching string', '')
size_mb = st.text_input('(optional) Match files up to size in MB (0 for all sizes)', '0')
if size_mb:
size_mb = int(size_mb)
else:
size_mb = 0
if bucket:
for key in bucket_resource.objects.all():
key_size_mb = key.size/1024/1024
total_size_gb += key_size_mb
total_files += 1
list_check = False
if not match:
list_check = True
elif match in key.key:
list_check = True
if list_check and not size_mb:
match_files += 1
match_size_gb += key_size_mb
st.write(f'{key.key} ({key_size_mb:3.0f}MB)')
elif list_check and key_size_mb <= size_mb:
match_files += 1
match_size_gb += key_size_mb
st.write(f'{key.key} ({key_size_mb:3.0f}MB)')
if match:
st.info(f'Matched file size is **{match_size_gb/1024:3.1f}GB** with **{match_files}** files')
st.success(f'Bucket **{bucket}** total size is **{total_size_gb/1024:3.1f}GB** with **{total_files}** files')
else:
st.info('Provide bucket name to list contents')
def create_bucket():
bucket = st.text_input('S3 bucket name to create', '')
if bucket:
try:
s3_client.create_bucket(Bucket=bucket)
except botocore.exceptions.ClientError as e:
st.error('Bucket **' + bucket + '** could not be created. ' + e.response['Error']['Message'])
return
st.success('The S3 bucket **' + bucket + '** successfully created or already exists in your account')
else:
st.info('Provide unique bucket name to create')
def s3_select():
bucket = st.text_input('S3 bucket name', '')
csv = st.text_input('CSV File path and name', '')
st.write("Example: `SELECT * FROM s3object s LIMIT 5`")
sql = st.text_area('SQL statement', '')
if bucket and csv and sql:
s3_select_results = s3_client.select_object_content(
Bucket=bucket,
Key=csv,
Expression=sql,
ExpressionType='SQL',
InputSerialization={'CSV': {"FileHeaderInfo": "Use"}},
OutputSerialization={'JSON': {}},
)
for event in s3_select_results['Payload']:
if 'Records' in event:
df = pd.read_json(io.StringIO(event['Records']['Payload'].decode('utf-8')), lines=True)
elif 'Stats' in event:
st.write(f"Scanned: {int(event['Stats']['Details']['BytesScanned'])/1024/1024:5.2f}MB")
st.write(f"Processed: {int(event['Stats']['Details']['BytesProcessed'])/1024/1024:5.2f}MB")
st.write(f"Returned: {int(event['Stats']['Details']['BytesReturned'])/1024/1024:5.2f}MB")
st.write(df)
else:
st.info('Provide S3 bucket, CSV file name, and SQL statement') | 39.361905 | 117 | 0.583837 |
0e506a262abbfab83584566410dfe7ec665436a4 | 4,172 | py | Python | tests/unit/bokeh/models/test_mappers.py | tcmetzger/bokeh | 5daff21bfb7e10b69ff9aa2f35eb506777a38264 | [
"BSD-3-Clause"
] | null | null | null | tests/unit/bokeh/models/test_mappers.py | tcmetzger/bokeh | 5daff21bfb7e10b69ff9aa2f35eb506777a38264 | [
"BSD-3-Clause"
] | null | null | null | tests/unit/bokeh/models/test_mappers.py | tcmetzger/bokeh | 5daff21bfb7e10b69ff9aa2f35eb506777a38264 | [
"BSD-3-Clause"
] | null | null | null | #-----------------------------------------------------------------------------
# Copyright (c) 2012 - 2020, Anaconda, Inc., and Bokeh Contributors.
# All rights reserved.
#
# The full license is in the file LICENSE.txt, distributed with this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Boilerplate
#-----------------------------------------------------------------------------
import pytest ; pytest
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
# Bokeh imports
from _util_models import check_properties_existence
from bokeh.palettes import Spectral6
# Module under test
import bokeh.models.mappers as bmm # isort:skip
#-----------------------------------------------------------------------------
# Setup
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# General API
#-----------------------------------------------------------------------------
class Test_CategoricalColorMapper:
def test_basic(self) -> None:
mapper = bmm.CategoricalColorMapper()
check_properties_existence(mapper, [
"factors",
"palette",
"start",
"end",
"nan_color"],
)
def test_warning_with_short_palette(self, recwarn) -> None:
bmm.CategoricalColorMapper(factors=["a", "b", "c"], palette=["red", "green"])
assert len(recwarn) == 1
def test_no_warning_with_long_palette(self, recwarn) -> None:
bmm.CategoricalColorMapper(factors=["a", "b", "c"], palette=["red", "green", "orange", "blue"])
assert len(recwarn) == 0
def test_with_pandas_index(self, pd) -> None:
fruits = ['Apples', 'Pears', 'Nectarines', 'Plums', 'Grapes', 'Strawberries']
years = ['2015', '2016', '2017']
data = {'2015' : [2, 1, 4, 3, 2, 4],
'2016' : [5, 3, 3, 2, 4, 6],
'2017' : [3, 2, 4, 4, 5, 3]}
df = pd.DataFrame(data, index=fruits)
fruits = df.index
years = df.columns
m = bmm.CategoricalColorMapper(palette=Spectral6, factors=years, start=1, end=2)
assert list(m.factors) == list(years)
assert isinstance(m.factors, pd.Index)
class Test_CategoricalPatternMapper:
def test_basic(self) -> None:
mapper = bmm.CategoricalPatternMapper()
check_properties_existence(mapper, [
"factors",
"patterns",
"start",
"end",
"default_value"],
)
class Test_CategoricalMarkerMapper:
def test_basic(self) -> None:
mapper = bmm.CategoricalMarkerMapper()
check_properties_existence(mapper, [
"factors",
"markers",
"start",
"end",
"default_value"],
)
class Test_LinearColorMapper:
def test_basic(self) -> None:
mapper = bmm.LinearColorMapper()
check_properties_existence(mapper, [
"palette",
"low",
"high",
"low_color",
"high_color",
"nan_color"],
)
class Test_LogColorMapper:
def test_basic(self) -> None:
mapper = bmm.LogColorMapper()
check_properties_existence(mapper, [
"palette",
"low",
"high",
"low_color",
"high_color",
"nan_color"],
)
#-----------------------------------------------------------------------------
# Dev API
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Private API
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Code
#-----------------------------------------------------------------------------
| 32.59375 | 103 | 0.394775 |
a4e32ef9c8adc091f8f4325ae63ce3419162c50b | 3,647 | py | Python | genedisco/evaluation/hitratio.py | genedisco/genedisco | 26b7ce93b222fd80e914f2f2236969b356e7f701 | [
"Apache-2.0"
] | 11 | 2022-02-07T13:19:02.000Z | 2022-03-25T03:38:15.000Z | genedisco/evaluation/hitratio.py | genedisco/genedisco | 26b7ce93b222fd80e914f2f2236969b356e7f701 | [
"Apache-2.0"
] | 4 | 2022-02-05T19:12:30.000Z | 2022-03-18T09:12:35.000Z | genedisco/evaluation/hitratio.py | genedisco/genedisco | 26b7ce93b222fd80e914f2f2236969b356e7f701 | [
"Apache-2.0"
] | 6 | 2022-02-07T16:14:54.000Z | 2022-03-18T22:26:31.000Z | """
Copyright (C) 2022 Arash Mehrjou, GlaxoSmithKline plc
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
"""
import os
import pickle
import numpy as np
from typing import Optional, AnyStr
from slingpy.evaluation.metrics.abstract_metric import AbstractMetric
class HitRatio(AbstractMetric):
"""
A metric to measure the ratio of the top mover genes selected by the acquisition function.
"""
def get_abbreviation(self) -> AnyStr:
return "HR"
@staticmethod
def evaluate(top_movers_filepath:AnyStr, super_dir_to_cycle_dirs: AnyStr) -> np.ndarray:
with open(top_movers_filepath, "rb") as f:
top_mover_indices = pickle.load(f)
top_mover_set = set(top_mover_indices)
num_top_hits = len(top_mover_indices)
num_AL_cycles = get_num_AL_cycles(super_dir_to_cycle_dirs)
selected_indices_per_cycle = get_cumulative_selected_indices(
super_dir_to_cycle_dirs)
cumulative_top_hit_ratio = []
for c in range(num_AL_cycles):
selected_indices = selected_indices_per_cycle[c]
num_of_hits = num_top_hits - len(top_mover_set - set(selected_indices))
cumulative_top_hit_ratio.append(num_of_hits/num_top_hits)
return cumulative_top_hit_ratio[-1] # returns the top hit ratio of the current cycle
def get_cumulative_selected_indices(super_dir_to_cycle_dirs: AnyStr):
""" Get a list of selected indiced at cycles of active learning.
Args:
super_dir_to_cycle_dirs: The dir in which the cycle dirs are saved.
seed: The seed of the experiment.
Return a concatenated list of the saved selected indices so far.
"""
num_AL_cycles = get_num_AL_cycles(super_dir_to_cycle_dirs)
selected_indices_per_cycles = []
for c in range(num_AL_cycles):
filename = os.path.join(super_dir_to_cycle_dirs, "cycle_" + str(c), "selected_indices.pickle")
with open(filename, "rb") as f:
selected_indices = pickle.load(f)
# selected_indices = [x.decode("utf-8") for x in selected_indices] # Uncomment this line if the stored Gene names are byte strings.
selected_indices_per_cycles.append(selected_indices)
return selected_indices_per_cycles
def get_num_AL_cycles(super_dir_to_cycle_dirs: AnyStr):
"""Get the number of cycles stored in the provided dir.
"""
all_subdirs = list(os.walk(super_dir_to_cycle_dirs))[0][1]
cycle_subdirs = [folder_name for folder_name in all_subdirs if folder_name.startswith("cycle")]
num_AL_cycles = len(cycle_subdirs)
return num_AL_cycles | 47.986842 | 143 | 0.732931 |
12fe26a4af0f0a8758ed418b3d06127b37fa4ad8 | 920 | py | Python | manager/projects/migrations/0016_auto_20201016_0326.py | jlbrewe/hub | c737669e6493ad17536eaa240bed3394b20c6b7d | [
"Apache-2.0"
] | 30 | 2016-03-26T12:08:04.000Z | 2021-12-24T14:48:32.000Z | manager/projects/migrations/0016_auto_20201016_0326.py | jlbrewe/hub | c737669e6493ad17536eaa240bed3394b20c6b7d | [
"Apache-2.0"
] | 1,250 | 2016-03-23T04:56:50.000Z | 2022-03-28T02:27:58.000Z | manager/projects/migrations/0016_auto_20201016_0326.py | jlbrewe/hub | c737669e6493ad17536eaa240bed3394b20c6b7d | [
"Apache-2.0"
] | 11 | 2016-07-14T17:04:20.000Z | 2021-07-01T16:19:09.000Z | # Generated by Django 3.1.2 on 2020-10-16 03:26
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('projects', '0015_auto_20201007_0337'),
]
operations = [
migrations.RemoveField(
model_name='googledrivesource',
name='folder_id',
),
migrations.AddField(
model_name='googledrivesource',
name='google_id',
field=models.TextField(default='', help_text='The id of the file or folder.'),
preserve_default=False,
),
migrations.AddField(
model_name='googledrivesource',
name='kind',
field=models.CharField(choices=[('file', 'File'), ('folder', 'Folder')], default='folder', help_text='The kind of Google Drive resource: file or folder.', max_length=16),
preserve_default=False,
),
]
| 30.666667 | 182 | 0.594565 |
a201ac4aa8fba548a2db478ed74b26f9d6a8d17b | 12,945 | py | Python | mvpnet/train_3d.py | shnhrtkyk/mvpnet | cadf636749b5ee6e73e96ff68e4b32728088decd | [
"MIT"
] | 79 | 2020-01-12T20:30:34.000Z | 2022-03-15T06:37:09.000Z | mvpnet/train_3d.py | jtpils/mvpnet | cadf636749b5ee6e73e96ff68e4b32728088decd | [
"MIT"
] | 4 | 2020-02-14T17:26:56.000Z | 2021-08-30T07:54:47.000Z | mvpnet/train_3d.py | jtpils/mvpnet | cadf636749b5ee6e73e96ff68e4b32728088decd | [
"MIT"
] | 10 | 2020-01-13T05:59:15.000Z | 2021-11-02T03:00:22.000Z | #!/usr/bin/env python
import os
import os.path as osp
import sys
import argparse
import logging
import time
import socket
import warnings
import open3d # import before torch
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriter
# Assume that the script is run at the root directory
_ROOT_DIR = os.path.abspath(osp.dirname(__file__) + '/..')
sys.path.insert(0, _ROOT_DIR)
from common.solver.build import build_optimizer, build_scheduler
from common.nn.freezer import Freezer
from common.utils.checkpoint import CheckpointerV2
from common.utils.logger import setup_logger
from common.utils.metric_logger import MetricLogger
from common.utils.torch_util import set_random_seed
from common.utils.sampler import IterationBasedBatchSampler
from mvpnet.models.build import build_model_sem_seg_3d
from mvpnet.data.build import build_dataloader
def parse_args():
parser = argparse.ArgumentParser(description='PyTorch 3D Deep Learning Training')
parser.add_argument(
'--cfg',
dest='config_file',
default='',
metavar='FILE',
help='path to config file',
type=str,
)
parser.add_argument(
'opts',
help='Modify config options using the command-line',
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
return args
def train(cfg, output_dir='', run_name=''):
# ---------------------------------------------------------------------------- #
# Build models, optimizer, scheduler, checkpointer, etc.
# It is recommended not to modify this section.
# ---------------------------------------------------------------------------- #
logger = logging.getLogger('mvpnet.train')
# build model
set_random_seed(cfg.RNG_SEED)
model, loss_fn, train_metric, val_metric = build_model_sem_seg_3d(cfg)
logger.info('Build model:\n{}'.format(str(model)))
num_params = sum(param.numel() for param in model.parameters())
print('#Parameters: {:.2e}'.format(num_params))
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
model = nn.DataParallel(model).cuda()
elif num_gpus == 1:
model = model.cuda()
else:
raise NotImplementedError('Not support cpu training now.')
# build optimizer
# model_cfg = cfg.MODEL[cfg.MODEL.TYPE]
optimizer = build_optimizer(cfg, model)
# build lr scheduler
scheduler = build_scheduler(cfg, optimizer)
# build checkpointer
# Note that checkpointer will load state_dict of model, optimizer and scheduler.
checkpointer = CheckpointerV2(model,
optimizer=optimizer,
scheduler=scheduler,
save_dir=output_dir,
logger=logger,
max_to_keep=cfg.TRAIN.MAX_TO_KEEP)
checkpoint_data = checkpointer.load(cfg.RESUME_PATH, resume=cfg.AUTO_RESUME, resume_states=cfg.RESUME_STATES)
ckpt_period = cfg.TRAIN.CHECKPOINT_PERIOD
# build freezer
if cfg.TRAIN.FROZEN_PATTERNS:
freezer = Freezer(model, cfg.TRAIN.FROZEN_PATTERNS)
freezer.freeze(verbose=True) # sanity check
else:
freezer = None
# build data loader
# Reset the random seed again in case the initialization of models changes the random state.
set_random_seed(cfg.RNG_SEED)
train_dataloader = build_dataloader(cfg, mode='train')
val_period = cfg.VAL.PERIOD
val_dataloader = build_dataloader(cfg, mode='val') if val_period > 0 else None
# build tensorboard logger (optionally by comment)
if output_dir:
tb_dir = osp.join(output_dir, 'tb.{:s}'.format(run_name))
summary_writier = SummaryWriter(tb_dir)
else:
summary_writier = None
# ---------------------------------------------------------------------------- #
# Train
# Customization begins here.
# ---------------------------------------------------------------------------- #
max_iteration = cfg.SCHEDULER.MAX_ITERATION
start_iteration = checkpoint_data.get('iteration', 0)
best_metric_name = 'best_{}'.format(cfg.VAL.METRIC)
best_metric = checkpoint_data.get(best_metric_name, None)
logger.info('Start training from iteration {}'.format(start_iteration))
# add metrics
if not isinstance(train_metric, (list, tuple)):
train_metric = [train_metric]
if not isinstance(val_metric, (list, tuple)):
val_metric = [val_metric]
train_metric_logger = MetricLogger(delimiter=' ')
train_metric_logger.add_meters(train_metric)
val_metric_logger = MetricLogger(delimiter=' ')
val_metric_logger.add_meters(val_metric)
# wrap the dataloader
batch_sampler = train_dataloader.batch_sampler
train_dataloader.batch_sampler = IterationBasedBatchSampler(batch_sampler, max_iteration, start_iteration)
def setup_train():
# set training mode
model.train()
loss_fn.train()
# freeze parameters/modules optionally
if freezer is not None:
freezer.freeze()
# reset metric
train_metric_logger.reset()
def setup_validate():
# set evaluate mode
model.eval()
loss_fn.eval()
# reset metric
val_metric_logger.reset()
setup_train()
end = time.time()
for iteration, data_batch in enumerate(train_dataloader, start_iteration):
data_time = time.time() - end
# copy data from cpu to gpu
data_batch = {k: v.cuda(non_blocking=True) for k, v in data_batch.items()}
# forward
preds = model(data_batch)
# update losses
optimizer.zero_grad()
loss_dict = loss_fn(preds, data_batch)
total_loss = sum(loss_dict.values())
# It is slightly faster to update metrics and meters before backward
with torch.no_grad():
train_metric_logger.update(loss=total_loss, **loss_dict)
for metric in train_metric:
metric.update_dict(preds, data_batch)
# backward
total_loss.backward()
if cfg.OPTIMIZER.MAX_GRAD_NORM > 0:
# CAUTION: built-in clip_grad_norm_ clips the total norm.
nn.utils.clip_grad_norm_(model.parameters(), max_norm=cfg.OPTIMIZER.MAX_GRAD_NORM)
optimizer.step()
batch_time = time.time() - end
train_metric_logger.update(time=batch_time, data=data_time)
cur_iter = iteration + 1
# log
if cur_iter == 1 or (cfg.TRAIN.LOG_PERIOD > 0 and cur_iter % cfg.TRAIN.LOG_PERIOD) == 0:
logger.info(
train_metric_logger.delimiter.join(
[
'iter: {iter:4d}',
'{meters}',
'lr: {lr:.2e}',
'max mem: {memory:.0f}',
]
).format(
iter=cur_iter,
meters=str(train_metric_logger),
lr=optimizer.param_groups[0]['lr'],
memory=torch.cuda.max_memory_allocated() / (1024.0 ** 2),
)
)
# summary
if summary_writier is not None and cfg.TRAIN.SUMMARY_PERIOD > 0 and cur_iter % cfg.TRAIN.SUMMARY_PERIOD == 0:
keywords = ('loss', 'acc', 'iou')
for name, meter in train_metric_logger.meters.items():
if all(k not in name for k in keywords):
continue
summary_writier.add_scalar('train/' + name, meter.global_avg, global_step=cur_iter)
# checkpoint
if (ckpt_period > 0 and cur_iter % ckpt_period == 0) or cur_iter == max_iteration:
checkpoint_data['iteration'] = cur_iter
checkpoint_data[best_metric_name] = best_metric
checkpointer.save('model_{:06d}'.format(cur_iter), **checkpoint_data)
# ---------------------------------------------------------------------------- #
# validate for one epoch
# ---------------------------------------------------------------------------- #
if val_period > 0 and (cur_iter % val_period == 0 or cur_iter == max_iteration):
start_time_val = time.time()
setup_validate()
end = time.time()
with torch.no_grad():
for iteration_val, data_batch in enumerate(val_dataloader):
data_time = time.time() - end
# copy data from cpu to gpu
data_batch = {k: v.cuda(non_blocking=True) for k, v in data_batch.items()}
# forward
preds = model(data_batch)
# update losses and metrics
loss_dict = loss_fn(preds, data_batch)
total_loss = sum(loss_dict.values())
# update metrics and meters
val_metric_logger.update(loss=total_loss, **loss_dict)
for metric in val_metric:
metric.update_dict(preds, data_batch)
batch_time = time.time() - end
val_metric_logger.update(time=batch_time, data=data_time)
end = time.time()
if cfg.VAL.LOG_PERIOD > 0 and iteration_val % cfg.VAL.LOG_PERIOD == 0:
logger.info(
val_metric_logger.delimiter.join(
[
'iter: {iter:4d}',
'{meters}',
'max mem: {memory:.0f}',
]
).format(
iter=iteration,
meters=str(val_metric_logger),
memory=torch.cuda.max_memory_allocated() / (1024.0 ** 2),
)
)
epoch_time_val = time.time() - start_time_val
logger.info('Iteration[{}]-Val {} total_time: {:.2f}s'.format(
cur_iter, val_metric_logger.summary_str, epoch_time_val))
# summary
if summary_writier is not None:
keywords = ('loss', 'acc', 'iou')
for name, meter in val_metric_logger.meters.items():
if all(k not in name for k in keywords):
continue
summary_writier.add_scalar('val/' + name, meter.global_avg, global_step=cur_iter)
# best validation
if cfg.VAL.METRIC in val_metric_logger.meters:
cur_metric = val_metric_logger.meters[cfg.VAL.METRIC].global_avg
if best_metric is None \
or ('loss' not in cfg.VAL.METRIC and cur_metric > best_metric) \
or ('loss' in cfg.VAL.METRIC and cur_metric < best_metric):
best_metric = cur_metric
checkpoint_data['iteration'] = cur_iter
checkpoint_data[best_metric_name] = best_metric
checkpointer.save('model_best', tag=False, **checkpoint_data)
# restore training
setup_train()
# since pytorch v1.1.0, lr_scheduler is called after optimization.
if scheduler is not None:
scheduler.step()
end = time.time()
logger.info('Best val-{} = {}'.format(cfg.VAL.METRIC, best_metric))
return model
def main():
args = parse_args()
# load the configuration
# import on-the-fly to avoid overwriting cfg
from common.config import purge_cfg
from mvpnet.config.sem_seg_3d import cfg
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
purge_cfg(cfg)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
# replace '@' with config path
if output_dir:
config_path = osp.splitext(args.config_file)[0]
output_dir = output_dir.replace('@', config_path.replace('configs', 'outputs'))
if osp.isdir(output_dir):
warnings.warn('Output directory exists.')
os.makedirs(output_dir, exist_ok=True)
# run name
timestamp = time.strftime('%m-%d_%H-%M-%S')
hostname = socket.gethostname()
run_name = '{:s}.{:s}'.format(timestamp, hostname)
logger = setup_logger('mvpnet', output_dir, comment='train.{:s}'.format(run_name))
logger.info('{:d} GPUs available'.format(torch.cuda.device_count()))
logger.info(args)
from common.utils.misc import collect_env_info
logger.info('Collecting env info (might take some time)\n' + collect_env_info())
logger.info('Loaded configuration file {:s}'.format(args.config_file))
logger.info('Running with config:\n{}'.format(cfg))
assert cfg.TASK == 'sem_seg_3d'
train(cfg, output_dir, run_name)
if __name__ == '__main__':
main()
| 38.641791 | 117 | 0.579452 |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
Use the Edit dataset card button to edit it.
- Downloads last month
- 40