Dataset Viewer
Auto-converted to Parquet
image
image
unique_id
string
width
int32
height
int32
original_file_format
string
image_mode_on_disk
string
img_00001_17c6
4,608
3,072
JPEG
RGB
img_00002_319c
5,304
7,952
JPEG
RGB
img_00003_cc6c
4,000
6,000
JPEG
RGB
img_00004_da0a
3,743
4,679
JPEG
RGB
img_00005_a4e1
4,278
5,348
JPEG
RGB
img_00006_bfe6
5,744
3,829
JPEG
RGB
img_00007_096e
6,000
4,000
JPEG
RGB
img_00008_3c43
3,526
4,407
JPEG
RGB
img_00009_0521
6,720
4,480
JPEG
RGB
img_00010_9086
3,717
6,608
JPEG
RGB
img_00011_a3d1
6,000
4,000
JPEG
RGB
img_00012_9fc5
5,989
3,993
JPEG
RGB
img_00013_ea73
6,702
4,127
JPEG
RGB
img_00014_5963
5,184
3,456
JPEG
RGB
img_00015_b70e
7,008
4,672
JPEG
RGB
img_00016_9109
6,000
4,000
JPEG
RGB
img_00017_4920
3,600
5,400
JPEG
RGB
img_00018_6c23
5,737
3,825
JPEG
RGB
img_00019_89e7
6,000
4,000
JPEG
RGB
img_00020_3fa1
6,000
4,000
JPEG
RGB
img_00021_5f92
4,102
6,154
JPEG
RGB
img_00022_381b
6,000
4,000
JPEG
RGB
img_00023_cf0c
6,000
4,000
JPEG
RGB
img_00024_73fa
4,160
6,240
JPEG
RGB
img_00025_e120
6,362
3,860
JPEG
RGB
img_00026_8114
3,845
5,768
JPEG
RGB
img_00027_a176
4,000
6,000
JPEG
RGB
img_00028_7709
6,000
4,000
JPEG
RGB
img_00029_ac0d
4,071
5,089
JPEG
RGB
img_00030_30bb
2,884
4,326
JPEG
RGB
img_00031_9e56
4,074
5,093
JPEG
RGB
img_00032_58ae
4,000
6,000
JPEG
RGB
img_00033_d702
5,184
3,456
JPEG
RGB
img_00034_c77a
5,774
3,849
JPEG
RGB
img_00035_3ff7
6,005
4,003
JPEG
RGB
img_00036_e5fc
3,830
2,713
JPEG
RGB
img_00037_459b
3,072
4,608
JPEG
RGB
img_00038_2d53
4,000
6,000
JPEG
RGB
img_00039_3e89
3,896
5,883
JPEG
RGB
img_00040_a2be
6,000
4,000
JPEG
RGB
img_00041_6ae1
4,618
3,079
JPEG
RGB
img_00042_dff5
6,720
4,480
JPEG
RGB
img_00043_97c9
6,000
4,000
JPEG
RGB
img_00044_f5f4
4,136
2,758
JPEG
RGB
img_00045_aa63
4,160
6,240
JPEG
RGB
img_00046_d580
3,456
5,184
JPEG
RGB
img_00047_9d55
5,948
3,965
JPEG
RGB
img_00048_7625
6,000
4,000
JPEG
RGB
img_00049_85d2
3,875
4,844
JPEG
RGB
img_00050_186b
4,145
6,217
JPEG
RGB
img_00051_c481
6,000
4,000
JPEG
RGB
img_00052_a616
4,393
6,034
JPEG
RGB
img_00053_94a7
6,000
4,000
JPEG
RGB
img_00054_abac
4,480
6,720
JPEG
RGB
img_00055_9a8c
6,000
4,000
JPEG
RGB
img_00056_f7c2
3,468
5,202
JPEG
RGB
img_00057_a558
3,743
4,679
JPEG
RGB
img_00058_423a
6,000
4,000
JPEG
RGB
img_00059_afcf
6,960
4,640
JPEG
RGB
img_00060_052d
4,000
6,000
JPEG
RGB
img_00061_ba8e
3,867
2,578
JPEG
RGB
img_00062_c7f5
5,796
3,864
JPEG
RGB
img_00063_b3a5
6,860
4,573
JPEG
RGB
img_00064_1a94
6,720
4,480
JPEG
RGB
img_00065_5b9c
5,067
7,703
JPEG
RGB
img_00066_1532
4,442
6,603
JPEG
RGB
img_00067_7f53
7,360
4,912
JPEG
RGB
img_00068_ff0e
7,360
4,912
JPEG
RGB
img_00069_b31b
7,360
4,912
JPEG
RGB
img_00070_05c2
7,680
4,320
JPEG
RGB
img_00071_9083
5,074
7,352
JPEG
RGB
img_00072_60c0
8,192
5,461
JPEG
RGB
img_00073_69a3
7,680
4,320
JPEG
RGB
img_00074_6b35
4,648
7,617
JPEG
RGB
img_00075_0e2d
5,304
7,952
JPEG
RGB
img_00076_e658
8,000
5,331
JPEG
RGB
img_00077_0869
7,000
3,500
JPEG
RGB
img_00078_7136
5,184
3,456
JPEG
RGB
img_00079_06b0
4,500
2,320
JPEG
RGB
img_00080_3bed
8,368
5,584
JPEG
RGB
img_00081_6c5a
5,472
3,648
JPEG
RGB
img_00082_c607
5,184
3,456
JPEG
RGB
img_00083_2163
10,000
4,651
JPEG
RGB
img_00084_f68a
4,600
2,400
JPEG
RGB
img_00085_71dc
5,200
2,734
JPEG
RGB
img_00086_f500
7,166
3,822
JPEG
RGB
img_00087_d91a
6,889
3,954
JPEG
RGB
img_00088_59eb
6,656
3,744
JPEG
RGB
img_00089_818b
4,800
2,092
JPEG
RGB
img_00090_1d6b
5,491
2,389
JPEG
RGB
img_00091_5a27
3,816
5,724
JPEG
RGB
img_00092_8ec0
5,367
2,427
JPEG
RGB
img_00093_644e
2,848
4,272
JPEG
RGB
img_00094_d9e6
4,218
3,000
JPEG
RGB
img_00095_e70d
5,039
2,440
JPEG
RGB
img_00096_7797
5,472
3,648
JPEG
RGB
img_00097_e80b
6,000
4,000
JPEG
RGB
img_00098_5d4c
6,000
4,000
JPEG
RGB
img_00099_e69c
3,648
5,472
JPEG
RGB
img_00100_390c
3,648
5,472
JPEG
RGB
End of preview. Expand in Data Studio

Sports Cars

High resolution image subset from the Aesthetic-Train-V2 dataset, contains a mix of modified street cars, high performance / super cars from various manufacturers.

Dataset Details

  • Curator: Roscosmos
  • Version: 1.0.0
  • Total Images: 600
  • Average Image Size (on disk): ~5.1 MB compressed
  • Primary Content: Sports Cars
  • Standardization: All images are standardized to RGB mode and saved at 95% quality for consistency.

Dataset Creation & Provenance

1. Original Master Dataset

This dataset is a subset derived from: zhang0jhon/Aesthetic-Train-V2

2. Iterative Curation Methodology

CLIP retrieval / manual curation.

Dataset Structure & Content

  • train split: Contains the full, high-resolution image data and associated metadata. This is the recommended split for model training and full data analysis.

Each example (row) in both splits contains the following fields:

  • image: The actual image data. In the train split, this is full-resolution.
  • unique_id: A unique identifier assigned to each image.
  • width: The width of the image in pixels (from the full-resolution image).
  • height: The height of the image in pixels (from the full-resolution image).

Citation

@inproceedings{zhang2025diffusion4k,
    title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
    author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
    year={2025},
    booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
}
@misc{zhang2025ultrahighresolutionimagesynthesis,
    title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
    author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
    year={2025},
    note={arXiv:2506.01331},
}

Disclaimer and Bias Considerations

Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.

Contact

N/A

Downloads last month
141