CSDI / crop_fundus_images.py
RainyNight's picture
Upload 2 files
e3f94d5 verified
raw
history blame
4.63 kB
import cv2
import numpy as np
import os
import argparse
from tqdm import tqdm
import csv
def crop_and_save_image(input_path, output_path, padding=10):
"""
Crop a single fundus image to remove black background and save to the specified path.
Returns:
dict: A dictionary containing cropping information, used for writing to CSV.
"""
try:
image = cv2.imread(input_path)
if image is None:
print(f"Warning: Unable to read image {input_path}, skipped.")
return None
original_h, original_w = image.shape[:2]
# Convert to grayscale for thresholding
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY)
# Find contours
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
print(f"Warning: No contours found in image {input_path}, skipped.")
return None
# Find the largest contour (main fundus region)
main_contour = max(contours, key=cv2.contourArea)
x, y, w, h = cv2.boundingRect(main_contour)
img_h, img_w = original_h, original_w
x1 = max(0, x - padding)
y1 = max(0, y - padding)
x2 = min(img_w, x + w + padding)
y2 = min(img_h, y + h + padding)
cropped_image = image[y1:y2, x1:x2]
# Replace white spots in black background with black
white_mask = np.all(cropped_image == [255, 255, 255], axis=-1)
cropped_image[white_mask] = [0, 0, 0]
cv2.imwrite(output_path, cropped_image)
# Calculate cropped pixels (left, top, right, bottom)
left_crop = x1
top_crop = y1
right_crop = img_w - x2
bottom_crop = img_h - y2
return {
"filename": os.path.basename(input_path),
"original_width": original_w,
"original_height": original_h,
"left_crop": left_crop,
"top_crop": top_crop,
"right_crop": right_crop,
"bottom_crop": bottom_crop
}
except Exception as e:
print(f"Error processing file {input_path}: {e}")
return None
def main():
parser = argparse.ArgumentParser(description="Automatically crop fundus images to remove black background.")
parser.add_argument('-i', '--input_dir', help="Input directory containing original images.", default="csdi_datasets/original_images")
parser.add_argument('-o', '--output_dir', help="Output directory for saving cropped images.", default="csdi_datasets/croped_images")
parser.add_argument('-p', '--padding', type=int, default=0, help="Extra pixel padding around the crop boundary, default 0.")
parser.add_argument('-c', '--csv_path', type=str, default="crop_info.csv", help="CSV file path to save cropping information, default 'crop_info.csv'.")
args = parser.parse_args()
input_dir = args.input_dir
output_dir = args.output_dir
padding = args.padding
csv_path = args.csv_path
if not os.path.isdir(input_dir):
print(f"Error: Input directory '{input_dir}' does not exist.")
return
os.makedirs(output_dir, exist_ok=True)
print(f"Cropped images will be saved to: '{output_dir}'")
supported_formats = ('.png', '.jpg', '.jpeg', '.bmp', '.tif', '.tiff')
image_files = [f for f in os.listdir(input_dir) if f.lower().endswith(supported_formats)]
if not image_files:
print(f"No supported image files found in directory '{input_dir}'.")
return
crop_records = []
print(f"Found {len(image_files)} images, starting processing...")
for filename in tqdm(image_files, desc="Processing progress"):
input_image_path = os.path.join(input_dir, filename)
output_image_path = os.path.join(output_dir, filename)
record = crop_and_save_image(input_image_path, output_image_path, padding)
if record:
crop_records.append(record)
# Write CSV file
with open(csv_path, 'w', newline='', encoding='utf-8') as csvfile:
fieldnames = ["filename", "original_width", "original_height", "left_crop", "top_crop", "right_crop", "bottom_crop"]
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for rec in crop_records:
writer.writerow(rec)
print(f"All images processed! Cropping information saved to '{csv_path}'.")
if __name__ == '__main__':
main()