Dataset Viewer
Auto-converted to Parquet
dataset_name
string
local_dir
string
dim
int64
nlist
int64
opq_m
int64
pq_m
int64
pq_bits
int64
nprobe
int64
faiss_version
string
timestamp
timestamp[s]
trained
bool
ntotal
int64
offset
int64
maloyan/wikipedia-22-12-en-embeddings-all-MiniLM-L6-v2
/aiau011_scratch/szg0148/home/RL_Project/RL_Feedback_Project/Data/wikipedia_ivfpq_gpu_only/wiki_emb_local
384
262,144
64
64
8
128
1.12.0
2025-09-27T01:29:18
true
35,167,920
35,167,920

dataset_info: features: - name: text dtype: string - name: embeddings dtype: float32 shape: [384] configs: - config_name: default data_files: "*.parquet"

Wikipedia IVF-OPQ-PQ Vector Database (GPU-Optimized)

A high-performance, GPU-accelerated FAISS vector database built from Wikipedia articles with pre-computed embeddings. This dataset contains approximately 35 million Wikipedia articles with 384-dimensional embeddings using the all-MiniLM-L6-v2 model.

Dataset Overview

This vector database uses advanced compression techniques (IVF + OPQ + PQ) to provide fast similarity search over Wikipedia content while maintaining high recall. The database is optimized for Retrieval Augmented Generation (RAG) applications and large-scale semantic search.

Key Features:

  • GPU-accelerated FAISS index with IVF, OPQ, and Product Quantization
  • SQLite text storage with aligned vector IDs
  • Memory-efficient compression (~64 bytes per vector)

Dataset Structure

wikipedia_vector_index_DB/ β”œβ”€β”€ index.faiss # Main FAISS index (CPU-serialized) β”œβ”€β”€ meta.json # Index metadata and parameters β”œβ”€β”€ docs.sqlite # Text storage (rowid = vector id) β”œβ”€β”€ docs.sqlite-wal # SQLite WAL file (if present) └── docs.sqlite-shm # SQLite shared memory (if present)

File Descriptions

  • index.faiss: Complete FAISS index containing trained OPQ matrices, IVF centroids, PQ codebooks, and compressed vector codes
  • meta.json: Checkpoint metadata including offset, ntotal, dimensions, and compression parameters
  • docs.sqlite: SQLite database with schema docs(id INTEGER PRIMARY KEY, text TEXT) where id matches FAISS vector IDs
  • *.parquet: Original embedding data in Parquet format for verification and rebuilding

Technical Specifications

Parameter Value Description
Vectors ~35M Total number of Wikipedia articles
Dimensions 384 Embedding dimensionality (all-MiniLM-L6-v2)
Index Type IVF-OPQ-PQ Inverted File + Optimized Product Quantization
Compression ~64 bytes/vector Memory-efficient storage
nlist 131k-262k Number of IVF clusters
OPQ 64 subspaces Optimized rotation matrix
PQ 64Γ—8 bits Product quantization parameters

Usage

Quick Start

from huggingface_hub import snapshot_download
import faiss
import sqlite3
import json

# Download the complete vector database
dataset_path = snapshot_download(
    repo_id="your-username/wikipedia-vector-db",
    repo_type="dataset",
    cache_dir="./data"
)

# Load FAISS index
index = faiss.read_index(f"{dataset_path}/index.faiss")

# Load metadata
with open(f"{dataset_path}/meta.json", "r") as f:
    meta = json.load(f)

# Connect to text database
conn = sqlite3.connect(f"{dataset_path}/docs.sqlite")

print(f"Loaded index with {index.ntotal:,} vectors")
print(f"Index dimension: {index.d}")

###GPU Accelerated
import faiss

# Move index to GPU for faster queries
res = faiss.StandardGpuResources()
gpu_index = faiss.index_cpu_to_gpu(res, 0, index)

# Set search parameters
gpu_index.nprobe = 128  # Higher = better recall, slower search

# Perform similarity search
query_vector = get_query_embedding("your search query")  # Shape: (1, 384)
distances, indices = gpu_index.search(query_vector, k=10)

# Retrieve corresponding text
cursor = conn.cursor()
for idx in indices[0]:
    result = cursor.execute("SELECT text FROM docs WHERE id = ?", (int(idx),)).fetchone()
    if result:
        print(f"ID {idx}: {result[0][:200]}...")

Original Dataset
This vector database is built from maloyan/wikipedia-22-12-en-embeddings-all-MiniLM-L6-v2, which contains pre-computed embeddings of Wikipedia articles using the sentence-transformers/all-MiniLM-L6-v2 model.
Downloads last month
30