|
--- |
|
license: apache-2.0 |
|
--- |
|
# 🌐 Essential-Web: FDC Level-2 Partitioned Dataset |
|
|
|
## 📋 Dataset Description |
|
|
|
This dataset contains a 1 trillion token sample from [**Essential-Web**](https://huggingface.co/datasets/EssentialAI/essential-web), partitioned by Free Decimal Correspondence (FDC) level-2 categories. [**Essential-Web**](https://huggingface.co/datasets/EssentialAI/essential-web) is a 24-trillion-token web dataset with extensive document-level metadata designed to enable rapid dataset curation through SQL-like filtering. |
|
|
|
## 🔍 Free Decimal Correspondence (FDC) |
|
|
|
The FDC taxonomy is an open classification system inspired by the Dewey Decimal System. Level-2 categories provide broad subject matter classifications that enable researchers to quickly identify and filter relevant content domains. |
|
|
|
For help navigating FDC codes, see: https://www.librarything.com/mds |
|
|
|
## ⚙️ Dataset Creation |
|
|
|
The source documents were classified using EAI-Taxonomy-0.5b, a classifier trained on synthetic labels generated by open-weight LLMs. The classification process involved inference across 23.6 billion web documents, requiring approximately 90,000 AMD MI300x GPU-hours. |
|
|
|
## 🎯 Performance |
|
|
|
Datasets curated from [**Essential-Web**](https://huggingface.co/datasets/EssentialAI/essential-web) using simple metadata filters have demonstrated competitive performance relative to top performing web-curated datasets: |
|
- 🧮 **Math**: within 8.0% of web-curated baselines |
|
- 💻 **Web Code**: 14.3% above web-curated baselines |
|
- 🔬 **STEM**: 24.5% above web-curated baselines |
|
- 🩺 **Medical**: 8.6% above web-curated baselines |
|
|
|
## 🏗️ Dataset Structure |
|
|
|
The dataset is organized by FDC level-2 categories, which provide a Dewey Decimal-inspired taxonomy for classifying web content by subject matter. Files are organized in the `data/` directory with partitions like: |
|
|
|
``` |
|
data/fdc_level=02/ |
|
data/fdc_level=05/ |
|
data/fdc_level=10/ |
|
... |
|
``` |
|
|
|
Each partition contains documents labeled with their corresponding FDC classification along with associated taxonomy metadata. |
|
|
|
# Dataset Schema Documentation |
|
|
|
## Overview |
|
|
|
This dataset contains web-crawled text data with comprehensive metadata, quality signals, and taxonomic classifications. Each record represents a document extracted from web archives with detailed provenance tracking and quality assessment metrics. |
|
|
|
## Core Fields |
|
|
|
| Field | Type | Description | Path | |
|
|-------|------|-------------|------| |
|
| `id` | `Int64` | Unique identifier based on document hash | `id` | |
|
| `text` | `String` | The main textual content of the document | `text` | |
|
|
|
## EAI Taxonomy Classification |
|
|
|
Comprehensive hierarchical classification system with primary and secondary labels - the most important feature of this dataset. The taxonomy is designed to provide detailed subject categorization, document type identification, content quality assessment, and extraction quality indicators. |
|
|
|
<details> |
|
<summary><strong>Free Decimal Correspondence (FDC)</strong></summary> |
|
|
|
A Dewey Decimal-inspired classification system with 3-level hierarchical labels. The FDC provides nested categories where each successive level refines its parent category. It's designed to be compatible with the Dewey Decimal System for library cataloging. |
|
|
|
**Level Structure:** |
|
- **Level 1**: Top-level categories (0-9) covering broad subject areas like General works, Philosophy, Religion, Social Sciences, etc. |
|
- **Level 2**: Sub-divisions (00-99) that refine Level 1 categories |
|
- **Level 3**: Specific categories (000-999) that further refine Level 2 categories |
|
|
|
| Component | Description | Path | |
|
|-----------|-------------|------| |
|
| Primary Code | Main classification code | `eai_taxonomy.free_decimal_correspondence.primary.code` | |
|
| Primary Level 1 | Top-level category (0=General works, 1=Philosophy, 2=Religion, 3=Social Sciences, 4=Language, 5=Science, 6=Technology, 7=Arts, 8=Literature, 9=History/Geography) | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_1` | |
|
| Primary Level 2 | Mid-level category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_2` | |
|
| Primary Level 3 | Specific category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_3` | |
|
| Secondary Code | Alternative classification code | `eai_taxonomy.free_decimal_correspondence.secondary.code` | |
|
| Secondary Level 1 | Alternative top-level category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_1` | |
|
| Secondary Level 2 | Alternative mid-level category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_2` | |
|
| Secondary Level 3 | Alternative specific category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_3` | |
|
|
|
We recommend this viewer for easily navigating the FDC categories when curating filters: https://www.librarything.com/mds |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Bloom's Taxonomy Integration</strong></summary> |
|
|
|
Based on Anderson and Krathwohl's 2001 revision of Bloom's Taxonomy of Educational Objectives, providing two complementary categorization dimensions for educational content analysis. |
|
|
|
### Knowledge Domain |
|
Categorizes the type of knowledge demonstrated in the document: |
|
|
|
| Component | Description | Path | |
|
|-----------|-------------|------| |
|
| Primary Code | Main knowledge domain code | `eai_taxonomy.bloom_knowledge_domain.primary.code` | |
|
| Primary Label | Main knowledge domain label | `eai_taxonomy.bloom_knowledge_domain.primary.label` | |
|
| Secondary Code | Alternative knowledge domain code | `eai_taxonomy.bloom_knowledge_domain.secondary.code` | |
|
| Secondary Label | Alternative knowledge domain label | `eai_taxonomy.bloom_knowledge_domain.secondary.label` | |
|
|
|
**Possible Values:** |
|
| Code | Label | Description | |
|
|------|-------|-------------| |
|
| `-1` | Abstain | Unable to determine | |
|
| `1` | Factual | Basic elements to learn or solve problems | |
|
| `2` | Conceptual | Interrelationships between basic elements within larger context | |
|
| `3` | Procedural | Methods and techniques in the discipline | |
|
| `4` | Metacognitive | Awareness of how learning works in relation to oneself | |
|
|
|
### Cognitive Processing Level |
|
Assesses the learning and thinking skill levels demonstrated by the document author: |
|
|
|
| Component | Description | Path | |
|
|-----------|-------------|------| |
|
| Primary Code | Main cognitive process code | `eai_taxonomy.bloom_cognitive_process.primary.code` | |
|
| Primary Label | Main cognitive process label | `eai_taxonomy.bloom_cognitive_process.primary.label` | |
|
| Secondary Code | Alternative cognitive process code | `eai_taxonomy.bloom_cognitive_process.secondary.code` | |
|
| Secondary Label | Alternative cognitive process label | `eai_taxonomy.bloom_cognitive_process.secondary.label` | |
|
|
|
**Possible Values:** |
|
| Code | Label | Description | |
|
|------|-------|-------------| |
|
| `-1` | Abstain | Unable to determine | |
|
| `1` | Remember | Retrieve relevant knowledge from memory | |
|
| `2` | Understand | Determine meaning of instructional messages | |
|
| `3` | Apply | Use a procedure in a given situation | |
|
| `4` | Analyze | Break materials into components and determine relationships | |
|
| `5` | Evaluate | Make judgments based on criteria and standards | |
|
| `6` | Create | Create new or original work | |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Document Characteristics</strong></summary> |
|
|
|
### Document Type v1 |
|
In-house classification of common web document types and formats: |
|
|
|
| Component | Description | Path | |
|
|-----------|-------------|------| |
|
| Primary Code | Main document type code | `eai_taxonomy.document_type_v1.primary.code` | |
|
| Primary Label | Main document type label | `eai_taxonomy.document_type_v1.primary.label` | |
|
| Secondary Code | Alternative document type code | `eai_taxonomy.document_type_v1.secondary.code` | |
|
| Secondary Label | Alternative document type label | `eai_taxonomy.document_type_v1.secondary.label` | |
|
|
|
**Possible Values:** |
|
| Code | Label | Examples | |
|
|------|-------|----------| |
|
| `-1` | Abstain | Unable to classify | |
|
| `1` | News/Editorial | CNN articles, opinion columns | |
|
| `2` | Academic/Research | ArXiv papers, research articles | |
|
| `3` | Reference/Encyclopedic/Educational | FAQs, Wikipedia entries | |
|
| `4` | Code/Software | GitHub repos, code examples | |
|
| `5` | Social/Forum | Conversation threads, Q&A boards | |
|
| `6` | Promotional/Advertisement | Product pages, calls to action | |
|
| `7` | Search/Directory/Bibliography | Link pages, search results | |
|
| `8` | Adult/Pornographic | Adult content | |
|
| `9` | Personal/Misc | Blogs, user profiles | |
|
| `10` | Machine-Generated | Lorem ipsum, garbled text | |
|
| `11` | Legal/Regulatory | Contracts, terms of service | |
|
| `12` | Government/Political | Legislation, press releases | |
|
| `13` | Literary/Creative | Poems, short stories | |
|
| `14` | Reviews/Critiques | Film critiques, product reviews | |
|
| `15` | E-Commerce/Marketplace | eBay listings, Amazon pages | |
|
| `16` | Images/Videos/Audio | YouTube videos, Imgur pages | |
|
| `17` | Other/Unclassified | Documents that resist classification | |
|
|
|
### Document Type v2 |
|
Updated classification based on WebOrganizer taxonomy with refined categories for improved document classification accuracy: |
|
|
|
| Component | Description | Path | |
|
|-----------|-------------|------| |
|
| Primary Code | Main document type code (v2) | `eai_taxonomy.document_type_v2.primary.code` | |
|
| Primary Label | Main document type label (v2) | `eai_taxonomy.document_type_v2.primary.label` | |
|
| Secondary Code | Alternative document type code (v2) | `eai_taxonomy.document_type_v2.secondary.code` | |
|
| Secondary Label | Alternative document type label (v2) | `eai_taxonomy.document_type_v2.secondary.label` | |
|
|
|
**Complete Value Mapping:** |
|
| Code | Label | Examples | |
|
|------|-------|----------| |
|
| `-1` | Abstain | Documents requiring human review | |
|
| `1` | About (Org.) | Company about pages, mission statements | |
|
| `2` | About (Personal) | Personal bios, LinkedIn profiles | |
|
| `3` | Academic Writing | Research papers, abstracts, dissertations | |
|
| `4` | Audio Transcript | Interview transcripts, court records, captions | |
|
| `5` | Comment Section | Reddit threads, blog comments | |
|
| `6` | Content Listing | Site maps, product catalogs, directory listings | |
|
| `7` | Creative Writing | Song lyrics, novel excerpts, poetry | |
|
| `8` | Documentation | API docs, README files, user manuals | |
|
| `9` | FAQ | FAQ pages, Q&A lists | |
|
| `10` | Knowledge Article | Wikipedia articles, Britannica entries | |
|
| `11` | Legal Notices | Privacy policies, license agreements, terms of service | |
|
| `12` | Listicle | Buzzfeed-style articles, "Top 10" lists | |
|
| `13` | News (Org.) | Government blog posts, corporate announcements | |
|
| `14` | News Article | Newspaper articles, CNN content, breaking news | |
|
| `15` | Nonfiction Writing | Editorials, obituaries, memoirs, opinion pieces | |
|
| `16` | Personal Blog | Personal journals, diary entries, lifestyle blogs | |
|
| `17` | Product Page | Product descriptions, course offerings, sales pages | |
|
| `18` | Q&A Forum | Quora posts, Stack Exchange discussions | |
|
| `19` | Spam / Ads | SEO keyword stuffing, promotional spam | |
|
| `20` | Structured Data | Datasheets, glossaries, JSON files, databases | |
|
| `21` | Customer Support | Help articles, troubleshooting guides | |
|
| `22` | Truncated | Paywalled sites, image galleries, partial content | |
|
| `23` | Tutorial | Cooking recipes, WikiHow pages, step-by-step guides | |
|
| `24` | User Review | Yelp reviews, TripAdvisor feedback, product reviews | |
|
| `25` | Other/Unclassified | Miscellaneous documents not fitting other categories | |
|
|
|
### Extraction Artifacts |
|
Assessment of technical extraction quality, identifying issues from HTML-to-text conversion: |
|
|
|
| Component | Description | Path | |
|
|-----------|-------------|------| |
|
| Primary Code | Main extraction artifact code | `eai_taxonomy.extraction_artifacts.primary.code` | |
|
| Primary Label | Main extraction artifact label | `eai_taxonomy.extraction_artifacts.primary.label` | |
|
| Secondary Code | Alternative extraction artifact code | `eai_taxonomy.extraction_artifacts.secondary.code` | |
|
| Secondary Label | Alternative extraction artifact label | `eai_taxonomy.extraction_artifacts.secondary.label` | |
|
|
|
**Possible Values:** |
|
| Code | Label | Description | |
|
|------|-------|-------------| |
|
| `-1` | Abstain | Unable to determine | |
|
| `0` | No Artifacts | Clean text with no leftover HTML or irrelevant elements | |
|
| `1` | Leftover HTML | HTML/code artifacts remaining after extraction | |
|
| `2` | Text Extraction Errors | Broken math expressions, encoding errors, improperly parsed tables | |
|
| `3` | Irrelevant Content | Headers, footers, nav menus extracted by mistake | |
|
| `4` | Indeterminate | Insufficient content to judge | |
|
|
|
### Missing Content |
|
Assessment of content completeness and extraction success: |
|
|
|
| Component | Description | Path | |
|
|-----------|-------------|------| |
|
| Primary Code | Main missing content code | `eai_taxonomy.missing_content.primary.code` | |
|
| Primary Label | Main missing content label | `eai_taxonomy.missing_content.primary.label` | |
|
| Secondary Code | Alternative missing content code | `eai_taxonomy.missing_content.secondary.code` | |
|
| Secondary Label | Alternative missing content label | `eai_taxonomy.missing_content.secondary.label` | |
|
|
|
**Possible Values:** |
|
| Code | Label | Description | |
|
|------|-------|-------------| |
|
| `-1` | Abstain | Unable to determine | |
|
| `0` | No Missing Content | Complete and coherent text | |
|
| `1` | Truncated Snippets | Obvious "...", incomplete paragraphs, cut-off text | |
|
| `2` | Click Here References | "Download here", "Click here" without linked content | |
|
| `3` | Incoherent Flow | Unreadable or illogical flow due to missing context | |
|
| `4` | Missing Images or Figures | Placeholders or references to missing visual content | |
|
| `5` | Missing Referenced Data | References to absent tables/datasets (e.g., "See Table 3") | |
|
| `6` | Indeterminate | Insufficient content to judge | |
|
|
|
### Text Structure Information |
|
|
|
| Field | Type | Description | Path | |
|
|-------|------|-------------|------| |
|
| Line Start Indices | `List[Int32]` | Starting indices of each line | `line_start_n_end_idx.line_start_idx` | |
|
| Line End Indices | `List[Int32]` | Ending indices of each line | `line_start_n_end_idx.line_end_idx` | |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Content Quality Dimensions</strong></summary> |
|
|
|
Quality assessment inspired by NaturalReasoning and FineWeb efforts to categorize web data by information sophistication. |
|
|
|
### Reasoning Depth |
|
Assesses the complexity and sophistication of logical reasoning in the document: |
|
|
|
| Component | Description | Path | |
|
|-----------|-------------|------| |
|
| Primary Code | Main reasoning depth code | `eai_taxonomy.reasoning_depth.primary.code` | |
|
| Primary Label | Main reasoning depth label | `eai_taxonomy.reasoning_depth.primary.label` | |
|
| Secondary Code | Alternative reasoning depth code | `eai_taxonomy.reasoning_depth.secondary.code` | |
|
| Secondary Label | Alternative reasoning depth label | `eai_taxonomy.reasoning_depth.secondary.label` | |
|
|
|
**Possible Values:** |
|
| Code | Label | Description | |
|
|------|-------|-------------| |
|
| `-1` | Abstain | Unable to determine | |
|
| `1` | No Reasoning | Facts present but no evidence of reasoning | |
|
| `2` | Basic Reasoning | Basic analysis with minimal explanation and summarization | |
|
| `3` | Intermediate Reasoning | Some logical steps connecting ideas and structured thinking | |
|
| `4` | Advanced Reasoning | Multi-step reasoning and thorough analysis with well-developed explanations | |
|
| `5` | Exceptional Reasoning | Novel abstractions, theoretical frameworks, long chain-of-thought, original insights, or proofs | |
|
| `6` | Indeterminate | Insufficient context to judge | |
|
|
|
### Technical Correctness |
|
Evaluates the accuracy and precision of technical information: |
|
|
|
| Component | Description | Path | |
|
|-----------|-------------|------| |
|
| Primary Code | Main technical correctness code | `eai_taxonomy.technical_correctness.primary.code` | |
|
| Primary Label | Main technical correctness label | `eai_taxonomy.technical_correctness.primary.label` | |
|
| Secondary Code | Alternative technical correctness code | `eai_taxonomy.technical_correctness.secondary.code` | |
|
| Secondary Label | Alternative technical correctness label | `eai_taxonomy.technical_correctness.secondary.label` | |
|
|
|
**Possible Values:** |
|
| Code | Label | Description | |
|
|------|-------|-------------| |
|
| `-1` | Abstain | Unable to determine | |
|
| `1` | Technically Flawed | Significant errors undermining content validity | |
|
| `2` | Partially Correct | Some correctness but contains flaws, omissions, or errors | |
|
| `3` | Mostly Correct | Technical correctness with minor flaws or incomplete explanations | |
|
| `4` | Highly Correct | High technical correctness with precise definitions and clear explanations | |
|
| `5` | Exceptionally Correct | Exceptional technical correctness with formal proofs and flawless content | |
|
| `6` | Not Applicable/Indeterminate | No technical content or insufficient context | |
|
|
|
### Education Level |
|
Assesses the appropriate educational background required to comprehend the content: |
|
|
|
| Component | Description | Path | |
|
|-----------|-------------|------| |
|
| Primary Code | Main education level code | `eai_taxonomy.education_level.primary.code` | |
|
| Primary Label | Main education level label | `eai_taxonomy.education_level.primary.label` | |
|
| Secondary Code | Alternative education level code | `eai_taxonomy.education_level.secondary.code` | |
|
| Secondary Label | Alternative education level label | `eai_taxonomy.education_level.secondary.label` | |
|
|
|
**Possible Values:** |
|
| Code | Label | Description | |
|
|------|-------|-------------| |
|
| `-1` | Abstain | Unable to determine | |
|
| `1` | General Audience | Accessible to anyone with basic literacy; simple terms | |
|
| `2` | High School Level | Requires high school education; specialized terminology explained for non-experts | |
|
| `3` | Undergraduate Level | Requires college education; uses specialized terminology and assumes background knowledge | |
|
| `4` | Graduate/Expert Level | Requires graduate education or domain expertise; assumes deep background knowledge | |
|
| `5` | Indeterminate | Insufficient content to judge educational level | |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Metadata</strong></summary> |
|
|
|
## Metadata Structure |
|
|
|
The `metadata` field contains a nested structure with web archive information: |
|
|
|
| Field | Type | Description | Path | |
|
|-------|------|-------------|------| |
|
| **URL Information** | | | | |
|
| URL | `String` | Original URL of the document | `metadata.url` | |
|
| Source Domain | `String` | Domain name of the source | `metadata.source_domain` | |
|
| Snapshot ID | `String` | Identifier for the web archive snapshot | `metadata.snapshot_id` | |
|
| **WARC Metadata** | | WARC (Web ARChive) format metadata | | |
|
| Content Length | `String` | Size of the content | `metadata.warc_metadata.Content-Length` | |
|
| Content Type | `String` | MIME type of the content | `metadata.warc_metadata.Content-Type` | |
|
| Block Digest | `String` | Checksum of the WARC block | `metadata.warc_metadata.WARC-Block-Digest` | |
|
| Concurrent To | `String` | Related WARC records | `metadata.warc_metadata.WARC-Concurrent-To` | |
|
| Date | `String` | Timestamp of the crawl | `metadata.warc_metadata.WARC-Date` | |
|
| IP Address | `String` | Source server IP address | `metadata.warc_metadata.WARC-IP-Address` | |
|
| Payload Type | `String` | Identified content type | `metadata.warc_metadata.WARC-Identified-Payload-Type` | |
|
| Payload Digest | `String` | Checksum of the payload | `metadata.warc_metadata.WARC-Payload-Digest` | |
|
| Record ID | `String` | Unique WARC record identifier | `metadata.warc_metadata.WARC-Record-ID` | |
|
| Target URI | `String` | Original target URL | `metadata.warc_metadata.WARC-Target-URI` | |
|
| Truncated | `String` | Truncation status | `metadata.warc_metadata.WARC-Truncated` | |
|
| Type | `String` | WARC record type | `metadata.warc_metadata.WARC-Type` | |
|
| Warcinfo ID | `String` | Associated warcinfo record | `metadata.warc_metadata.WARC-Warcinfo-ID` | |
|
| **Additional Info** | | | | |
|
| WARC Info | `String` | Additional WARC information | `metadata.warc_info` | |
|
|
|
</details> |
|
|
|
<details> |
|
<summary><strong>Quality Signals</strong></summary> |
|
|
|
The dataset includes two comprehensive quality assessment frameworks: |
|
|
|
## Red Pajama v2 Quality Metrics |
|
|
|
Text quality indicators derived from the Red Pajama v2 filtering pipeline: |
|
|
|
### Content Structure Metrics |
|
| Metric | Description | Path | |
|
|--------|-------------|------| |
|
| Original Length | Original document length | `quality_signals.red_pajama_v2.ccnet_original_length` | |
|
| Original Lines | Number of lines in original document | `quality_signals.red_pajama_v2.ccnet_original_nlines` | |
|
| Sentence Count | Total sentence count | `quality_signals.red_pajama_v2.rps_doc_num_sentences` | |
|
| Word Count | Total word count | `quality_signals.red_pajama_v2.rps_doc_word_count` | |
|
| Mean Word Length | Average word length | `quality_signals.red_pajama_v2.rps_doc_mean_word_length` | |
|
|
|
### Language Quality Metrics |
|
| Metric | Description | Path | |
|
|--------|-------------|------| |
|
| Stop Word Fraction | Proportion of stop words | `quality_signals.red_pajama_v2.rps_doc_stop_word_fraction` | |
|
| Unique Words Fraction | Fraction of unique words | `quality_signals.red_pajama_v2.rps_doc_frac_unique_words` | |
|
| All Caps Words | Fraction of words in all capitals | `quality_signals.red_pajama_v2.rps_doc_frac_all_caps_words` | |
|
| Non-Alphabetic Words | Fraction of non-alphabetic words | `quality_signals.red_pajama_v2.rps_doc_frac_no_alph_words` | |
|
| Unigram Entropy | Entropy measure of word distribution | `quality_signals.red_pajama_v2.rps_doc_unigram_entropy` | |
|
|
|
### Content Pattern Analysis |
|
| Metric | Description | Path | |
|
|--------|-------------|------| |
|
| Curly Bracket Density | Curly bracket density (code indicator) | `quality_signals.red_pajama_v2.rps_doc_curly_bracket` | |
|
| Symbol-to-Word Ratio | Symbol-to-word ratio | `quality_signals.red_pajama_v2.rps_doc_symbol_to_word_ratio` | |
|
| Ellipsis Line Endings | Lines ending with ellipsis | `quality_signals.red_pajama_v2.rps_doc_frac_lines_end_with_ellipsis` | |
|
| Lorem Ipsum Detection | Lorem ipsum text detection | `quality_signals.red_pajama_v2.rps_doc_lorem_ipsum` | |
|
| Offensive Content | Potentially offensive content detection | `quality_signals.red_pajama_v2.rps_doc_ldnoobw_words` | |
|
| UT1 Blacklist | UT1 blacklist filtering score | `quality_signals.red_pajama_v2.rps_doc_ut1_blacklist` | |
|
|
|
### Duplication Detection |
|
| Metric | Description | Path | |
|
|--------|-------------|------| |
|
| 5-gram Duplication | Character-level duplication for 5-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_5grams` | |
|
| 6-gram Duplication | Character-level duplication for 6-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_6grams` | |
|
| 7-gram Duplication | Character-level duplication for 7-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_7grams` | |
|
| 8-gram Duplication | Character-level duplication for 8-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_8grams` | |
|
| 9-gram Duplication | Character-level duplication for 9-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_9grams` | |
|
| 10-gram Duplication | Character-level duplication for 10-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_10grams` | |
|
| Top 2-gram Coverage | Most frequent 2-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_2gram` | |
|
| Top 3-gram Coverage | Most frequent 3-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_3gram` | |
|
| Top 4-gram Coverage | Most frequent 4-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_4gram` | |
|
|
|
### Domain Importance Scores |
|
| Metric | Description | Path | |
|
|--------|-------------|------| |
|
| Books Importance | Similarity to book content | `quality_signals.red_pajama_v2.rps_doc_books_importance` | |
|
| Books Importance (Length Corrected) | Length-corrected books similarity | `quality_signals.red_pajama_v2.rps_doc_books_importance_length_correction` | |
|
| OpenWebText Importance | Similarity to OpenWebText | `quality_signals.red_pajama_v2.rps_doc_openwebtext_importance` | |
|
| OpenWebText Importance (Length Corrected) | Length-corrected OpenWebText similarity | `quality_signals.red_pajama_v2.rps_doc_openwebtext_importance_length_correction` | |
|
| Wikipedia Importance | Similarity to Wikipedia | `quality_signals.red_pajama_v2.rps_doc_wikipedia_importance` | |
|
| Wikipedia Importance (Length Corrected) | Length-corrected Wikipedia similarity | `quality_signals.red_pajama_v2.rps_doc_wikipedia_importance_length_correction` | |
|
|
|
## FastText Classification Scores |
|
|
|
Domain and content type classification probabilities: |
|
|
|
| Metric | Description | Path | |
|
|--------|-------------|------| |
|
| DCLM Score | DataComp-LM classifier score | `quality_signals.fasttext.dclm` | |
|
| English Confidence | English language confidence | `quality_signals.fasttext.english` | |
|
| Educational Content | Educational content approximation | `quality_signals.fasttext.fineweb_edu_approx` | |
|
| General Math | General mathematics content | `quality_signals.fasttext.eai_general_math` | |
|
| Web Math | OWM Web-based mathematics content | `quality_signals.fasttext.eai_open_web_math` | |
|
| Code Content | Code content detection | `quality_signals.fasttext.eai_web_code` | |
|
|
|
</details> |
|
|
|
## How to Load the Dataset |
|
|
|
This section provides examples of how to load the `EssentialAI/essential-web-1t-sample-fdc-partitioned` dataset using different Python libraries and frameworks. |
|
|
|
### Using Hugging Face Datasets (Standard Method) |
|
|
|
The simplest way to load the dataset is using the Hugging Face `datasets` library: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load the entire dataset |
|
dataset = load_dataset("EssentialAI/essential-web-1t-sample-fdc-partitioned") |
|
|
|
# View dataset structure |
|
print(dataset) |
|
print(f"Number of examples: {len(dataset['train'])}") |
|
``` |
|
|
|
You can also load the dataset in streaming mode to avoid downloading the entire dataset at once: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# Load in streaming mode |
|
dataset = load_dataset("EssentialAI/essential-web-1t-sample-fdc-partitioned", streaming=True) |
|
data_stream = dataset["train"] |
|
|
|
# Iterate through examples |
|
for example in data_stream.take(5): |
|
print(example) |
|
``` |
|
|
|
### Using PySpark |
|
|
|
For large-scale distributed processing, you can load the dataset using PySpark with the `pyspark_huggingface` library: |
|
|
|
```python |
|
# First install the required library: |
|
# pip install pyspark_huggingface |
|
|
|
import pyspark_huggingface |
|
from pyspark.sql import SparkSession |
|
|
|
# Initialize Spark session |
|
spark = SparkSession.builder.appName("EAI-Taxonomy-Web-1T-Sample-FDC-Partitioned").getOrCreate() |
|
|
|
# Load the dataset using the "huggingface" data source |
|
df = spark.read.format("huggingface").load("EssentialAI/essential-web-1t-sample-fdc-partitioned") |
|
|
|
# Basic dataset exploration |
|
print(f"Dataset shape: {df.count()} rows, {len(df.columns)} columns") |
|
df.show(10) |
|
df.printSchema() |
|
|
|
# Load only specific columns for efficiency |
|
df_subset = ( |
|
spark.read.format("huggingface") |
|
.option("columns", '["column1", "column2"]') # Replace with actual column names |
|
.load("EssentialAI/essential-web-1t-sample-fdc-partitioned") |
|
) |
|
|
|
# Run SQL queries on the dataset |
|
df.createOrReplaceTempView("eai_web_1t_sample_fdc_partitioned_dataset") |
|
result = spark.sql(""" |
|
SELECT COUNT(*) as total_examples |
|
FROM eai_web_1t_sample_fdc_partitioned_dataset |
|
""") |
|
result.show() |
|
``` |
|
|
|
### Using Daft |
|
|
|
Daft provides a modern DataFrame library optimized for machine learning workloads. You can load the dataset directly from Hugging Face: |
|
|
|
```python |
|
import daft |
|
|
|
# Load the entire dataset |
|
df = daft.read_parquet("hf://datasets/EssentialAI/essential-web-1t-sample-fdc-partitioned") |
|
|
|
# Basic exploration |
|
print("Dataset schema:") |
|
df.schema() |
|
|
|
print("First 5 rows:") |
|
df.show(5) |
|
``` |
|
|
|
If you need to access private datasets or use authentication: |
|
|
|
```python |
|
import daft |
|
from daft.io import IOConfig, HTTPConfig |
|
|
|
io_config = IOConfig(http=HTTPConfig(bearer_token="your_token")) |
|
df = daft.read_parquet("hf://datasets/EssentialAI/essential-web-1t-sample-fdc-partitioned", io_config=io_config) |
|
``` |
|
|
|
### Installation Requirements |
|
|
|
Make sure you have the required libraries installed: |
|
|
|
```bash |
|
# For Hugging Face datasets |
|
pip install datasets |
|
|
|
# For PySpark with Hugging Face integration |
|
pip install pyspark_huggingface |
|
|
|
# For Daft |
|
pip install daft |
|
``` |
|
|
|
## 🎓 Citation |
|
|
|
If you use this dataset, please cite our EssentialWeb paper: |
|
|
|
```bibtex |
|
@article{essentialweb2025, |
|
title={Essential-Web: 24T tokens of organized web data}, |
|
author={[Authors]}, |
|
year={2025} |
|
} |
|
``` |