Datasets:
update readme
Browse files
README.md
CHANGED
@@ -1,22 +1,20 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
task_categories:
|
4 |
-
- visual-question-answering
|
5 |
language:
|
6 |
-
- en
|
7 |
tags:
|
8 |
-
- spatial-reasoning
|
9 |
-
- multimodal
|
10 |
pretty_name: Spatial457
|
11 |
size_categories:
|
12 |
-
- 10K<n<100K
|
13 |
---
|
14 |
-
<!-- # Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models -->
|
15 |
|
16 |
-
<
|
17 |
-
<img src="https://xingruiwang.github.io/projects/Spatial457/static/images/
|
18 |
-
|
19 |
-
</p>
|
20 |
|
21 |
<h1 align="center">
|
22 |
<a href="https://arxiv.org/abs/2502.08636">
|
@@ -24,63 +22,111 @@ size_categories:
|
|
24 |
</a>
|
25 |
</h1>
|
26 |
|
27 |
-
|
28 |
<p align="center">
|
29 |
-
<a href=".">Xingrui Wang</a><sup>1</sup>,
|
30 |
-
<a href="
|
31 |
-
<a href="
|
32 |
-
<a href="
|
33 |
-
<a href="
|
34 |
-
<a href="
|
35 |
</p>
|
36 |
|
37 |
<p align="center">
|
38 |
-
<sup>1</sup> Johns Hopkins University
|
39 |
<sup>2</sup> DEVCOM Army Research Laboratory
|
40 |
</p>
|
41 |
|
42 |
-
|
43 |
<p align="center">
|
44 |
-
<a href="https://xingruiwang.github.io/projects/Spatial457/"
|
45 |
-
<a href="https://arxiv.org/abs/2502.08636"
|
46 |
-
<a href="https://huggingface.co/datasets/RyanWW/Spatial457">🤗
|
47 |
-
<a href="https://github.com/XingruiWang/Spatial457"
|
48 |
</p>
|
49 |
|
50 |
<p align="center">
|
51 |
-
<img src="https://xingruiwang.github.io/projects/Spatial457/static/images/teaser.png" alt="Spatial457 Teaser" width="80%"
|
52 |
</p>
|
53 |
|
54 |
-
<!-- <p align="center"><i>
|
55 |
-
Official implementation of the CVPR 2025 (Highlight) paper:
|
56 |
-
<strong>Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models</strong>
|
57 |
-
</i></p> -->
|
58 |
-
|
59 |
---
|
60 |
|
61 |
## 🧠 Introduction
|
62 |
|
63 |
-
Spatial457 is a diagnostic benchmark designed to evaluate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
---
|
66 |
|
67 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
|
71 |
-
-
|
72 |
-
-
|
73 |
-
-
|
|
|
|
|
|
|
|
|
74 |
|
75 |
---
|
76 |
|
77 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
|
83 |
-
<!-- Include table image or markdown table here if needed -->
|
84 |
|
85 |
---
|
86 |
|
@@ -94,5 +140,6 @@ The table below summarizes model performance across 7 subsets:
|
|
94 |
year = {2025},
|
95 |
url = {https://arxiv.org/abs/2502.08636}
|
96 |
}
|
|
|
97 |
|
98 |
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
task_categories:
|
4 |
+
- visual-question-answering
|
5 |
language:
|
6 |
+
- en
|
7 |
tags:
|
8 |
+
- spatial-reasoning
|
9 |
+
- multimodal
|
10 |
pretty_name: Spatial457
|
11 |
size_categories:
|
12 |
+
- 10K<n<100K
|
13 |
---
|
|
|
14 |
|
15 |
+
<div align="center">
|
16 |
+
<img src="https://xingruiwang.github.io/projects/Spatial457/static/images/icon_name.png" alt="Spatial457 Logo" width="240"/>
|
17 |
+
</div>
|
|
|
18 |
|
19 |
<h1 align="center">
|
20 |
<a href="https://arxiv.org/abs/2502.08636">
|
|
|
22 |
</a>
|
23 |
</h1>
|
24 |
|
|
|
25 |
<p align="center">
|
26 |
+
<a href="https://xingruiwang.github.io/">Xingrui Wang</a><sup>1</sup>,
|
27 |
+
<a href="#">Wufei Ma</a><sup>1</sup>,
|
28 |
+
<a href="#">Tiezheng Zhang</a><sup>1</sup>,
|
29 |
+
<a href="#">Celso M. de Melo</a><sup>2</sup>,
|
30 |
+
<a href="#">Jieneng Chen</a><sup>1</sup>,
|
31 |
+
<a href="#">Alan Yuille</a><sup>1</sup>
|
32 |
</p>
|
33 |
|
34 |
<p align="center">
|
35 |
+
<sup>1</sup> Johns Hopkins University
|
36 |
<sup>2</sup> DEVCOM Army Research Laboratory
|
37 |
</p>
|
38 |
|
|
|
39 |
<p align="center">
|
40 |
+
<a href="https://xingruiwang.github.io/projects/Spatial457/">🌐 Project Page</a> •
|
41 |
+
<a href="https://arxiv.org/abs/2502.08636">📄 Paper</a> •
|
42 |
+
<a href="https://huggingface.co/datasets/RyanWW/Spatial457">🤗 Dataset</a> •
|
43 |
+
<a href="https://github.com/XingruiWang/Spatial457">💻 Code</a>
|
44 |
</p>
|
45 |
|
46 |
<p align="center">
|
47 |
+
<img src="https://xingruiwang.github.io/projects/Spatial457/static/images/teaser.png" alt="Spatial457 Teaser" width="80%"/>
|
48 |
</p>
|
49 |
|
|
|
|
|
|
|
|
|
|
|
50 |
---
|
51 |
|
52 |
## 🧠 Introduction
|
53 |
|
54 |
+
**Spatial457** is a diagnostic benchmark designed to evaluate **6D spatial reasoning** in large multimodal models (LMMs). It systematically introduces four core spatial capabilities:
|
55 |
+
|
56 |
+
- 🧱 Multi-object understanding
|
57 |
+
- 🧭 2D spatial localization
|
58 |
+
- 📦 3D spatial localization
|
59 |
+
- 🔄 3D orientation estimation
|
60 |
+
|
61 |
+
These are assessed across **five difficulty levels** and **seven diverse question types**, ranging from simple object queries to complex reasoning about physical interactions.
|
62 |
|
63 |
---
|
64 |
|
65 |
+
## 📂 Dataset Structure
|
66 |
+
|
67 |
+
The dataset is organized as follows:
|
68 |
+
|
69 |
+
```
|
70 |
+
Spatial457/
|
71 |
+
├── images/ # RGB images used in VQA tasks
|
72 |
+
├── questions/ # JSONs for each subtask
|
73 |
+
│ ├── L1_single.json
|
74 |
+
│ ├── L2_objects.json
|
75 |
+
│ ├── L3_2d_spatial.json
|
76 |
+
│ ├── L4_occ.json
|
77 |
+
│ └── ...
|
78 |
+
├── Spatial457.py # Hugging Face dataset loader script
|
79 |
+
├── README.md # Documentation
|
80 |
+
```
|
81 |
|
82 |
+
Each JSON file contains a list of VQA examples, where each item includes:
|
83 |
|
84 |
+
- "image_filename": image file name used in the question
|
85 |
+
- "question": natural language question
|
86 |
+
- "answer": boolean, string, or number
|
87 |
+
- "program": symbolic program (optional)
|
88 |
+
- "question_index": unique identifier
|
89 |
+
|
90 |
+
This modular structure supports scalable multi-task evaluation across levels and reasoning types.
|
91 |
|
92 |
---
|
93 |
|
94 |
+
## 🛠️ Dataset Usage
|
95 |
+
|
96 |
+
You can load the dataset directly using the Hugging Face 🤗 `datasets` library:
|
97 |
+
|
98 |
+
### ��� Load a specific subtask (e.g., L1_single)
|
99 |
+
|
100 |
+
```python
|
101 |
+
from datasets import load_dataset
|
102 |
+
|
103 |
+
dataset = load_dataset("RyanWW/Spatial457", name="L1_single", split="train")
|
104 |
+
```
|
105 |
+
|
106 |
+
Each example is a dictionary like:
|
107 |
+
|
108 |
+
```python
|
109 |
+
{
|
110 |
+
'image': <PIL.Image.Image>,
|
111 |
+
'image_filename': 'superCLEVR_new_000001.png',
|
112 |
+
'question': 'Is the large red object in front of the yellow car?',
|
113 |
+
'answer': 'True',
|
114 |
+
'program': [...],
|
115 |
+
'question_index': 100001
|
116 |
+
}
|
117 |
+
```
|
118 |
+
|
119 |
+
### 🔹 Other available configurations
|
120 |
|
121 |
+
```python
|
122 |
+
[
|
123 |
+
"L1_single", "L2_objects", "L3_2d_spatial",
|
124 |
+
"L4_occ", "L4_pose", "L5_6d_spatial", "L5_collision"
|
125 |
+
]
|
126 |
+
```
|
127 |
|
128 |
+
You can swap `name="..."` in `load_dataset(...)` to evaluate different spatial reasoning capabilities.
|
129 |
|
|
|
130 |
|
131 |
---
|
132 |
|
|
|
140 |
year = {2025},
|
141 |
url = {https://arxiv.org/abs/2502.08636}
|
142 |
}
|
143 |
+
```
|
144 |
|
145 |
|