Datasets:
image
image | label
string | gesture_type
string | label_id
int64 |
---|---|---|---|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
|
Sikharam | single_hand | 42 |
Bharatanatyam Mudra Dataset
Dataset Description
The Bharatanatyam Mudra Dataset contains 28,431 images of hand gestures (mudras) from Bharatanatyam, a classical Indian dance form. The dataset was collected from 15 volunteers in a studio environment and includes both single-hand and double-hand gestures.
Dataset Statistics
- Total Images: 28,431
- Single Hand Gestures (Asamyukta Hastas): 15,396 images across 29 classes
- Double Hand Gestures (Samyukta Hastas): 13,035 images across 21 classes
- Total Classes: 50 different mudras
Dataset Structure
The dataset is organized into 50 classes representing different mudras:
Single Hand Gestures (Asamyukta Hastas) - 29 classes
- Pathaka, Tripathaka, Ardhapathaka, Mayura, Katrimukha
- Ardhachandran, Aralam, Shukatundam, Mushti, Sikharam
- Kapith, Katakamukha_1, Katakamukha_2, Katakamukha_3, Suchi
- Chandrakala, Padmakosha, Sarpasirsha, Mrigasirsha, Simhamukham
- Kangulam, Alapadmam, Mukulam, Chaturam, Bramaram
- Hamsasyam, Hamsapaksham, Tamarachudam, Trishulam
Double Hand Gestures (Samyukta Hastas) - 21 classes
- Anjali, Kapotham, Karkatta, Swastikam, Pushpaputam
- Shivalinga, Katakavardhana, Kartariswastika, Sakata, Shanka
- Chakra, Samputa, Pasha, Kilaka, Matsya
- Kurma, Varaha, Garuda, Nagabandha, Khatva, Berunda
Data Fields
image
: PIL Image of the mudralabel
: String label of the mudra namelabel_id
: Numerical ID for the labelgesture_type
: Either "single_hand" or "double_hand"
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("samarth/bharatanatyam-mudra-dataset")
# Access the data
train_data = dataset["train"]
print(f"Number of samples: {len(train_data)}")
print(f"Features: {train_data.features}")
# Example: Get first image and label
sample = train_data[0]
image = sample["image"]
label = sample["label"]
print(f"Label: {label}")
Applications
This dataset can be used for:
- Hand gesture recognition and classification
- Cultural heritage preservation through AI
- Computer vision research on hand pose estimation
- Educational applications for learning Bharatanatyam
- Transfer learning for other hand gesture datasets
Citation and Acknowledgments
This data was collected as part of Ph.D. work done under the guidance of Dr. Sunil T.T, Professor, College of Engineering, Attingal, Thiruvananthapuram, Kerala, India.
For original-sized images or additional information, please contact: Jisha Raj R at [email protected]
License
This dataset is available under the MIT License.
Ethical Considerations
This dataset was collected with the consent of volunteers in a controlled studio environment. The dataset represents traditional Indian cultural practices and should be used respectfully, particularly in research and educational contexts.
- Downloads last month
- 0