Dataset Viewer
Auto-converted to Parquet
image
image
label
string
gesture_type
string
label_id
int64
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
Sikharam
single_hand
42
End of preview. Expand in Data Studio

Bharatanatyam Mudra Dataset

Dataset Description

The Bharatanatyam Mudra Dataset contains 28,431 images of hand gestures (mudras) from Bharatanatyam, a classical Indian dance form. The dataset was collected from 15 volunteers in a studio environment and includes both single-hand and double-hand gestures.

Dataset Statistics

  • Total Images: 28,431
  • Single Hand Gestures (Asamyukta Hastas): 15,396 images across 29 classes
  • Double Hand Gestures (Samyukta Hastas): 13,035 images across 21 classes
  • Total Classes: 50 different mudras

Dataset Structure

The dataset is organized into 50 classes representing different mudras:

Single Hand Gestures (Asamyukta Hastas) - 29 classes

  • Pathaka, Tripathaka, Ardhapathaka, Mayura, Katrimukha
  • Ardhachandran, Aralam, Shukatundam, Mushti, Sikharam
  • Kapith, Katakamukha_1, Katakamukha_2, Katakamukha_3, Suchi
  • Chandrakala, Padmakosha, Sarpasirsha, Mrigasirsha, Simhamukham
  • Kangulam, Alapadmam, Mukulam, Chaturam, Bramaram
  • Hamsasyam, Hamsapaksham, Tamarachudam, Trishulam

Double Hand Gestures (Samyukta Hastas) - 21 classes

  • Anjali, Kapotham, Karkatta, Swastikam, Pushpaputam
  • Shivalinga, Katakavardhana, Kartariswastika, Sakata, Shanka
  • Chakra, Samputa, Pasha, Kilaka, Matsya
  • Kurma, Varaha, Garuda, Nagabandha, Khatva, Berunda

Data Fields

  • image: PIL Image of the mudra
  • label: String label of the mudra name
  • label_id: Numerical ID for the label
  • gesture_type: Either "single_hand" or "double_hand"

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("samarth/bharatanatyam-mudra-dataset")

# Access the data
train_data = dataset["train"]
print(f"Number of samples: {len(train_data)}")
print(f"Features: {train_data.features}")

# Example: Get first image and label
sample = train_data[0]
image = sample["image"]
label = sample["label"]
print(f"Label: {label}")

Applications

This dataset can be used for:

  • Hand gesture recognition and classification
  • Cultural heritage preservation through AI
  • Computer vision research on hand pose estimation
  • Educational applications for learning Bharatanatyam
  • Transfer learning for other hand gesture datasets

Citation and Acknowledgments

This data was collected as part of Ph.D. work done under the guidance of Dr. Sunil T.T, Professor, College of Engineering, Attingal, Thiruvananthapuram, Kerala, India.

For original-sized images or additional information, please contact: Jisha Raj R at [email protected]

License

This dataset is available under the MIT License.

Ethical Considerations

This dataset was collected with the consent of volunteers in a controlled studio environment. The dataset represents traditional Indian cultural practices and should be used respectfully, particularly in research and educational contexts.

Downloads last month
0