File size: 2,050 Bytes
afb70b9 1a740ba afb70b9 1a740ba afb70b9 1a740ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
Food Ontology (FoodON)
========================================================================================================================
Overview
--------
FoodOn, the food ontology, contains vocabulary for naming food materials and their anatomical and taxonomic origins,
from raw harvested food to processed food products, for humans and domesticated animals.
It provides a neutral and ontology-driven standard for government agencies,
industry, nonprofits and consumers to name and reference food products and their components
throughout the food supply chain.
:Domain: Agricultural
:Category: Diet, Metabolomics, and Nutrition
:Current Version: None
:Last Updated: 2025-01-16
:Creator: None
:License: Creative Commons 4.0
:Format: OWL
:Download: `Food Ontology (FoodON) Homepage <http://purl.obolibrary.org/obo/foodon.owl>`_
Graph Metrics
-------------
- **Total Nodes**: 176584
- **Total Edges**: 423840
- **Root Nodes**: 4834
- **Leaf Nodes**: 90848
Knowledge coverage
------------------
- Classes: 47261
- Individuals: 16
- Properties: 197
Hierarchical metrics
--------------------
- **Maximum Depth**: 23
- **Minimum Depth**: 0
- **Average Depth**: 2.24
- **Depth Variance**: 4.81
Breadth metrics
------------------
- **Maximum Breadth**: 11122
- **Minimum Breadth**: 2
- **Average Breadth**: 1217.12
- **Breadth Variance**: 6546794.36
Dataset Statistics
------------------
Generated Benchmarks:
- **Term Types**: 16
- **Taxonomic Relations**: 76235
- **Non-taxonomic Relations**: 2072
- **Average Terms per Type**: 8.00
Usage Example
-------------
.. code-block:: python
from ontolearner.ontology import FoodOn
# Initialize and load ontology
ontology = FoodOn()
ontology.load("path/to/ontology.OWL")
# Extract datasets
data = ontology.extract()
# Access specific relations
term_types = data.term_typings
taxonomic_relations = data.type_taxonomies
non_taxonomic_relations = data.type_non_taxonomic_relations
|