Andrei Aioanei commited on
Commit
afb70b9
·
1 Parent(s): 30ab2cf

Update agricultural domain with 3 ontologies

Browse files
.gitattributes CHANGED
@@ -57,3 +57,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ agrovoc/agrovoc.rdf filter=lfs diff=lfs merge=lfs -text
61
+ foodon/foodon.owl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: mit
4
+ language:
5
+ - en
6
+ tags:
7
+ - OntoLearner
8
+ - ontology-learning
9
+ - agricultural
10
+ pretty_name: Agricultural
11
+ ---
12
+ <div>
13
+ <img src="https://raw.githubusercontent.com/sciknoworg/OntoLearner/main/images/logo.png" alt="OntoLearner"
14
+ style="display: block; margin: 0 auto; width: 500px; height: auto;">
15
+ <h1 style="text-align: center; margin-top: 1em;">Agricultural Domain Ontologies</h1>
16
+ </div>
17
+
18
+ ## Overview
19
+ Agricultural ontologies encompass formal knowledge representations of farming systems, crops, food production, and agricultural vocabularies, providing structured taxonomies and semantic relationships that model the complex interactions within agricultural domains. These ontologies capture critical concepts including crop varieties, growth cycles, farming practices, soil properties, irrigation methods, pest management, harvest techniques, food processing chains, nutritional values, agricultural economics, and regional farming terminologies. By standardizing agricultural knowledge in machine-readable formats, these ontologies enable interoperability between agricultural information systems and enhance data integration for agricultural research. The OntoLearner library's collection of these domain-specific resources promotes ontology reuse, standardization, and benchmarking for automated ontology learning applications in agricultural contexts.
20
+
21
+ ## Ontologies
22
+ | Ontology ID | Full Name | Classes | Properties | Last Updated |
23
+ |-------------|-----------|---------|------------|--------------|
24
+ | FoodOn | Food Ontology (FoodON) | 47261 | 197 | 2025-01-16|
25
+ | AGROVOC | AGROVOC Multilingual Thesaurus (AGROVOC) | 35 | 209 | August 12, 2024|
26
+ | PO | Plant Ontology (PO) | 1874 | 13 | None|
27
+
28
+ ## Dataset Files
29
+ Each ontology directory contains the following files:
30
+ 1. `<ontology_id>.<format>` - The original ontology file
31
+ 2. `term_typings.json` - Dataset of term to type mappings
32
+ 3. `taxonomies.json` - Dataset of taxonomic relations
33
+ 4. `non_taxonomic_relations.json` - Dataset of non-taxonomic relations
34
+ 5. `<ontology_id>.rst` - Documentation describing the ontology
35
+
36
+ ## Usage
37
+ These datasets are intended for ontology learning research and applications.
38
+
agrovoc/agrovoc.rdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61656b2d45724bf3fdd611ca74af16263cb61177edb0cb6e2a8edf54ac282453
3
+ size 1146007760
agrovoc/agrovoc.rst ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AGROVOC Multilingual Thesaurus (AGROVOC)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ AGROVOC is a relevant Linked Open Data set about agriculture available for public use and facilitates
7
+ access and visibility of data across domains and languages. It offers a structured collection of agricultural concepts,
8
+ terms, definitions and relationships which are used to unambiguously identify resources, allowing standardized
9
+ indexing processes and making searches more efficient.
10
+
11
+ :Domain: Agricultural
12
+ :Category: Agricultural Knowledge
13
+ :Current Version: 2024-04
14
+ :Last Updated: August 12, 2024
15
+ :Creator: Food and Agriculture Organization of the United Nations
16
+ :License: Creative Commons 4.0
17
+ :Format: RDF, SKOS
18
+ :Download: `AGROVOC Multilingual Thesaurus (AGROVOC) Homepage <https://agroportal.lirmm.fr/ontologies/AGROVOC>`_
19
+
20
+ Graph Metrics
21
+ -------------
22
+ - **Total Nodes**: 2279766
23
+ - **Total Edges**: 10140352
24
+ - **Root Nodes**: 59
25
+ - **Leaf Nodes**: 981249
26
+
27
+ Knowledge coverage
28
+ ------------------
29
+ - Classes: 35
30
+ - Individuals: 1234769
31
+ - Properties: 209
32
+
33
+ Hierarchical metrics
34
+ --------------------
35
+ - **Maximum Depth**: 11
36
+ - **Minimum Depth**: 0
37
+ - **Average Depth**: 5.24
38
+ - **Depth Variance**: 2.31
39
+
40
+ Breadth metrics
41
+ ------------------
42
+ - **Maximum Breadth**: 617543
43
+ - **Minimum Breadth**: 9
44
+ - **Average Breadth**: 189858.08
45
+ - **Breadth Variance**: 44142143480.08
46
+
47
+ Dataset Statistics
48
+ ------------------
49
+ Generated Benchmarks:
50
+ - **Term Types**: 1234769
51
+ - **Taxonomic Relations**: 13
52
+ - **Non-taxonomic Relations**: 7
53
+ - **Average Terms per Type**: 137196.56
54
+
55
+ Usage Example
56
+ -------------
57
+ .. code-block:: python
58
+
59
+ from ontolearner.ontology import AGROVOC
60
+
61
+ # Initialize and load ontology
62
+ ontology = AGROVOC()
63
+ ontology.load("path/to/ontology.owl")
64
+
65
+ # Extract datasets
66
+ data = ontology.extract()
67
+
68
+ # Access specific relations
69
+ term_types = data.term_typings
70
+ taxonomic_relations = data.type_taxonomies
71
+ non_taxonomic_relations = data.type_non_taxonomic_relations
dataset_infos.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "name": "Ontology Domain: Agricultural",
3
+ "description": "Dataset containing ontologies and processed data for the Agricultural domain",
4
+ "license": "mixed",
5
+ "tags": [
6
+ "ontology",
7
+ "agricultural",
8
+ "knowledge-graph"
9
+ ],
10
+ "ontologies": [
11
+ "FoodOn",
12
+ "AGROVOC",
13
+ "PO"
14
+ ]
15
+ }
foodon/foodon.owl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11386429187a2f0f96563ea2b4c9ad5e65c9f1845c4d14b66e35f509a21a4b1e
3
+ size 41615642
foodon/foodon.rst ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Food Ontology (FoodON)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ FoodOn, the food ontology, contains vocabulary for naming food materials and their anatomical and taxonomic origins,
7
+ from raw harvested food to processed food products, for humans and domesticated animals.
8
+ It provides a neutral and ontology-driven standard for government agencies,
9
+ industry, nonprofits and consumers to name and reference food products and their components
10
+ throughout the food supply chain.
11
+
12
+ :Domain: Agricultural
13
+ :Category: Diet, Metabolomics, and Nutrition
14
+ :Current Version: None
15
+ :Last Updated: 2025-01-16
16
+ :Creator: None
17
+ :License: Creative Commons 4.0
18
+ :Format: OWL
19
+ :Download: `Food Ontology (FoodON) Homepage <http://purl.obolibrary.org/obo/foodon.owl>`_
20
+
21
+ Graph Metrics
22
+ -------------
23
+ - **Total Nodes**: 176584
24
+ - **Total Edges**: 423840
25
+ - **Root Nodes**: 4834
26
+ - **Leaf Nodes**: 90848
27
+
28
+ Knowledge coverage
29
+ ------------------
30
+ - Classes: 47261
31
+ - Individuals: 16
32
+ - Properties: 197
33
+
34
+ Hierarchical metrics
35
+ --------------------
36
+ - **Maximum Depth**: 23
37
+ - **Minimum Depth**: 0
38
+ - **Average Depth**: 2.24
39
+ - **Depth Variance**: 4.81
40
+
41
+ Breadth metrics
42
+ ------------------
43
+ - **Maximum Breadth**: 11122
44
+ - **Minimum Breadth**: 2
45
+ - **Average Breadth**: 1217.12
46
+ - **Breadth Variance**: 6546794.36
47
+
48
+ Dataset Statistics
49
+ ------------------
50
+ Generated Benchmarks:
51
+ - **Term Types**: 16
52
+ - **Taxonomic Relations**: 98513
53
+ - **Non-taxonomic Relations**: 2072
54
+ - **Average Terms per Type**: 8.00
55
+
56
+ Usage Example
57
+ -------------
58
+ .. code-block:: python
59
+
60
+ from ontolearner.ontology import FoodOn
61
+
62
+ # Initialize and load ontology
63
+ ontology = FoodOn()
64
+ ontology.load("path/to/ontology.owl")
65
+
66
+ # Extract datasets
67
+ data = ontology.extract()
68
+
69
+ # Access specific relations
70
+ term_types = data.term_typings
71
+ taxonomic_relations = data.type_taxonomies
72
+ non_taxonomic_relations = data.type_non_taxonomic_relations
po/po.owl ADDED
The diff for this file is too large to render. See raw diff
 
po/po.rst ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Plant Ontology (PO)
2
+ ========================================================================================================================
3
+
4
+ Overview
5
+ --------
6
+ The Plant Ontology (PO) is a structured vocabulary and database resource that links plant anatomy,
7
+ morphology and growth and development to plant genomics data.
8
+
9
+ :Domain: Agricultural
10
+ :Category: Plant Anatomy, Morphology, Growth and Development
11
+ :Current Version: None
12
+ :Last Updated: None
13
+ :Creator: None
14
+ :License: Creative Commons 4.0
15
+ :Format: OWL, TTL, CSV, NT
16
+ :Download: `Plant Ontology (PO) Homepage <https://github.com/Planteome/plant-ontology>`_
17
+
18
+ Graph Metrics
19
+ -------------
20
+ - **Total Nodes**: 20790
21
+ - **Total Edges**: 60638
22
+ - **Root Nodes**: 5936
23
+ - **Leaf Nodes**: 11639
24
+
25
+ Knowledge coverage
26
+ ------------------
27
+ - Classes: 1874
28
+ - Individuals: 0
29
+ - Properties: 13
30
+
31
+ Hierarchical metrics
32
+ --------------------
33
+ - **Maximum Depth**: 5
34
+ - **Minimum Depth**: 0
35
+ - **Average Depth**: 1.07
36
+ - **Depth Variance**: 0.72
37
+
38
+ Breadth metrics
39
+ ------------------
40
+ - **Maximum Breadth**: 8034
41
+ - **Minimum Breadth**: 82
42
+ - **Average Breadth**: 3462.50
43
+ - **Breadth Variance**: 11752362.58
44
+
45
+ Dataset Statistics
46
+ ------------------
47
+ Generated Benchmarks:
48
+ - **Term Types**: 0
49
+ - **Taxonomic Relations**: 5288
50
+ - **Non-taxonomic Relations**: 36
51
+ - **Average Terms per Type**: 0.00
52
+
53
+ Usage Example
54
+ -------------
55
+ .. code-block:: python
56
+
57
+ from ontolearner.ontology import PO
58
+
59
+ # Initialize and load ontology
60
+ ontology = PO()
61
+ ontology.load("path/to/ontology.owl")
62
+
63
+ # Extract datasets
64
+ data = ontology.extract()
65
+
66
+ # Access specific relations
67
+ term_types = data.term_typings
68
+ taxonomic_relations = data.type_taxonomies
69
+ non_taxonomic_relations = data.type_non_taxonomic_relations