Andrei Aioanei
commited on
Commit
·
afb70b9
1
Parent(s):
30ab2cf
Update agricultural domain with 3 ontologies
Browse files- .gitattributes +2 -0
- README.md +38 -0
- agrovoc/agrovoc.rdf +3 -0
- agrovoc/agrovoc.rst +71 -0
- dataset_infos.json +15 -0
- foodon/foodon.owl +3 -0
- foodon/foodon.rst +72 -0
- po/po.owl +0 -0
- po/po.rst +69 -0
.gitattributes
CHANGED
@@ -57,3 +57,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
57 |
# Video files - compressed
|
58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
60 |
+
agrovoc/agrovoc.rdf filter=lfs diff=lfs merge=lfs -text
|
61 |
+
foodon/foodon.owl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
license: mit
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
tags:
|
7 |
+
- OntoLearner
|
8 |
+
- ontology-learning
|
9 |
+
- agricultural
|
10 |
+
pretty_name: Agricultural
|
11 |
+
---
|
12 |
+
<div>
|
13 |
+
<img src="https://raw.githubusercontent.com/sciknoworg/OntoLearner/main/images/logo.png" alt="OntoLearner"
|
14 |
+
style="display: block; margin: 0 auto; width: 500px; height: auto;">
|
15 |
+
<h1 style="text-align: center; margin-top: 1em;">Agricultural Domain Ontologies</h1>
|
16 |
+
</div>
|
17 |
+
|
18 |
+
## Overview
|
19 |
+
Agricultural ontologies encompass formal knowledge representations of farming systems, crops, food production, and agricultural vocabularies, providing structured taxonomies and semantic relationships that model the complex interactions within agricultural domains. These ontologies capture critical concepts including crop varieties, growth cycles, farming practices, soil properties, irrigation methods, pest management, harvest techniques, food processing chains, nutritional values, agricultural economics, and regional farming terminologies. By standardizing agricultural knowledge in machine-readable formats, these ontologies enable interoperability between agricultural information systems and enhance data integration for agricultural research. The OntoLearner library's collection of these domain-specific resources promotes ontology reuse, standardization, and benchmarking for automated ontology learning applications in agricultural contexts.
|
20 |
+
|
21 |
+
## Ontologies
|
22 |
+
| Ontology ID | Full Name | Classes | Properties | Last Updated |
|
23 |
+
|-------------|-----------|---------|------------|--------------|
|
24 |
+
| FoodOn | Food Ontology (FoodON) | 47261 | 197 | 2025-01-16|
|
25 |
+
| AGROVOC | AGROVOC Multilingual Thesaurus (AGROVOC) | 35 | 209 | August 12, 2024|
|
26 |
+
| PO | Plant Ontology (PO) | 1874 | 13 | None|
|
27 |
+
|
28 |
+
## Dataset Files
|
29 |
+
Each ontology directory contains the following files:
|
30 |
+
1. `<ontology_id>.<format>` - The original ontology file
|
31 |
+
2. `term_typings.json` - Dataset of term to type mappings
|
32 |
+
3. `taxonomies.json` - Dataset of taxonomic relations
|
33 |
+
4. `non_taxonomic_relations.json` - Dataset of non-taxonomic relations
|
34 |
+
5. `<ontology_id>.rst` - Documentation describing the ontology
|
35 |
+
|
36 |
+
## Usage
|
37 |
+
These datasets are intended for ontology learning research and applications.
|
38 |
+
|
agrovoc/agrovoc.rdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61656b2d45724bf3fdd611ca74af16263cb61177edb0cb6e2a8edf54ac282453
|
3 |
+
size 1146007760
|
agrovoc/agrovoc.rst
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
AGROVOC Multilingual Thesaurus (AGROVOC)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
AGROVOC is a relevant Linked Open Data set about agriculture available for public use and facilitates
|
7 |
+
access and visibility of data across domains and languages. It offers a structured collection of agricultural concepts,
|
8 |
+
terms, definitions and relationships which are used to unambiguously identify resources, allowing standardized
|
9 |
+
indexing processes and making searches more efficient.
|
10 |
+
|
11 |
+
:Domain: Agricultural
|
12 |
+
:Category: Agricultural Knowledge
|
13 |
+
:Current Version: 2024-04
|
14 |
+
:Last Updated: August 12, 2024
|
15 |
+
:Creator: Food and Agriculture Organization of the United Nations
|
16 |
+
:License: Creative Commons 4.0
|
17 |
+
:Format: RDF, SKOS
|
18 |
+
:Download: `AGROVOC Multilingual Thesaurus (AGROVOC) Homepage <https://agroportal.lirmm.fr/ontologies/AGROVOC>`_
|
19 |
+
|
20 |
+
Graph Metrics
|
21 |
+
-------------
|
22 |
+
- **Total Nodes**: 2279766
|
23 |
+
- **Total Edges**: 10140352
|
24 |
+
- **Root Nodes**: 59
|
25 |
+
- **Leaf Nodes**: 981249
|
26 |
+
|
27 |
+
Knowledge coverage
|
28 |
+
------------------
|
29 |
+
- Classes: 35
|
30 |
+
- Individuals: 1234769
|
31 |
+
- Properties: 209
|
32 |
+
|
33 |
+
Hierarchical metrics
|
34 |
+
--------------------
|
35 |
+
- **Maximum Depth**: 11
|
36 |
+
- **Minimum Depth**: 0
|
37 |
+
- **Average Depth**: 5.24
|
38 |
+
- **Depth Variance**: 2.31
|
39 |
+
|
40 |
+
Breadth metrics
|
41 |
+
------------------
|
42 |
+
- **Maximum Breadth**: 617543
|
43 |
+
- **Minimum Breadth**: 9
|
44 |
+
- **Average Breadth**: 189858.08
|
45 |
+
- **Breadth Variance**: 44142143480.08
|
46 |
+
|
47 |
+
Dataset Statistics
|
48 |
+
------------------
|
49 |
+
Generated Benchmarks:
|
50 |
+
- **Term Types**: 1234769
|
51 |
+
- **Taxonomic Relations**: 13
|
52 |
+
- **Non-taxonomic Relations**: 7
|
53 |
+
- **Average Terms per Type**: 137196.56
|
54 |
+
|
55 |
+
Usage Example
|
56 |
+
-------------
|
57 |
+
.. code-block:: python
|
58 |
+
|
59 |
+
from ontolearner.ontology import AGROVOC
|
60 |
+
|
61 |
+
# Initialize and load ontology
|
62 |
+
ontology = AGROVOC()
|
63 |
+
ontology.load("path/to/ontology.owl")
|
64 |
+
|
65 |
+
# Extract datasets
|
66 |
+
data = ontology.extract()
|
67 |
+
|
68 |
+
# Access specific relations
|
69 |
+
term_types = data.term_typings
|
70 |
+
taxonomic_relations = data.type_taxonomies
|
71 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
dataset_infos.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "Ontology Domain: Agricultural",
|
3 |
+
"description": "Dataset containing ontologies and processed data for the Agricultural domain",
|
4 |
+
"license": "mixed",
|
5 |
+
"tags": [
|
6 |
+
"ontology",
|
7 |
+
"agricultural",
|
8 |
+
"knowledge-graph"
|
9 |
+
],
|
10 |
+
"ontologies": [
|
11 |
+
"FoodOn",
|
12 |
+
"AGROVOC",
|
13 |
+
"PO"
|
14 |
+
]
|
15 |
+
}
|
foodon/foodon.owl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11386429187a2f0f96563ea2b4c9ad5e65c9f1845c4d14b66e35f509a21a4b1e
|
3 |
+
size 41615642
|
foodon/foodon.rst
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Food Ontology (FoodON)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
FoodOn, the food ontology, contains vocabulary for naming food materials and their anatomical and taxonomic origins,
|
7 |
+
from raw harvested food to processed food products, for humans and domesticated animals.
|
8 |
+
It provides a neutral and ontology-driven standard for government agencies,
|
9 |
+
industry, nonprofits and consumers to name and reference food products and their components
|
10 |
+
throughout the food supply chain.
|
11 |
+
|
12 |
+
:Domain: Agricultural
|
13 |
+
:Category: Diet, Metabolomics, and Nutrition
|
14 |
+
:Current Version: None
|
15 |
+
:Last Updated: 2025-01-16
|
16 |
+
:Creator: None
|
17 |
+
:License: Creative Commons 4.0
|
18 |
+
:Format: OWL
|
19 |
+
:Download: `Food Ontology (FoodON) Homepage <http://purl.obolibrary.org/obo/foodon.owl>`_
|
20 |
+
|
21 |
+
Graph Metrics
|
22 |
+
-------------
|
23 |
+
- **Total Nodes**: 176584
|
24 |
+
- **Total Edges**: 423840
|
25 |
+
- **Root Nodes**: 4834
|
26 |
+
- **Leaf Nodes**: 90848
|
27 |
+
|
28 |
+
Knowledge coverage
|
29 |
+
------------------
|
30 |
+
- Classes: 47261
|
31 |
+
- Individuals: 16
|
32 |
+
- Properties: 197
|
33 |
+
|
34 |
+
Hierarchical metrics
|
35 |
+
--------------------
|
36 |
+
- **Maximum Depth**: 23
|
37 |
+
- **Minimum Depth**: 0
|
38 |
+
- **Average Depth**: 2.24
|
39 |
+
- **Depth Variance**: 4.81
|
40 |
+
|
41 |
+
Breadth metrics
|
42 |
+
------------------
|
43 |
+
- **Maximum Breadth**: 11122
|
44 |
+
- **Minimum Breadth**: 2
|
45 |
+
- **Average Breadth**: 1217.12
|
46 |
+
- **Breadth Variance**: 6546794.36
|
47 |
+
|
48 |
+
Dataset Statistics
|
49 |
+
------------------
|
50 |
+
Generated Benchmarks:
|
51 |
+
- **Term Types**: 16
|
52 |
+
- **Taxonomic Relations**: 98513
|
53 |
+
- **Non-taxonomic Relations**: 2072
|
54 |
+
- **Average Terms per Type**: 8.00
|
55 |
+
|
56 |
+
Usage Example
|
57 |
+
-------------
|
58 |
+
.. code-block:: python
|
59 |
+
|
60 |
+
from ontolearner.ontology import FoodOn
|
61 |
+
|
62 |
+
# Initialize and load ontology
|
63 |
+
ontology = FoodOn()
|
64 |
+
ontology.load("path/to/ontology.owl")
|
65 |
+
|
66 |
+
# Extract datasets
|
67 |
+
data = ontology.extract()
|
68 |
+
|
69 |
+
# Access specific relations
|
70 |
+
term_types = data.term_typings
|
71 |
+
taxonomic_relations = data.type_taxonomies
|
72 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|
po/po.owl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
po/po.rst
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Plant Ontology (PO)
|
2 |
+
========================================================================================================================
|
3 |
+
|
4 |
+
Overview
|
5 |
+
--------
|
6 |
+
The Plant Ontology (PO) is a structured vocabulary and database resource that links plant anatomy,
|
7 |
+
morphology and growth and development to plant genomics data.
|
8 |
+
|
9 |
+
:Domain: Agricultural
|
10 |
+
:Category: Plant Anatomy, Morphology, Growth and Development
|
11 |
+
:Current Version: None
|
12 |
+
:Last Updated: None
|
13 |
+
:Creator: None
|
14 |
+
:License: Creative Commons 4.0
|
15 |
+
:Format: OWL, TTL, CSV, NT
|
16 |
+
:Download: `Plant Ontology (PO) Homepage <https://github.com/Planteome/plant-ontology>`_
|
17 |
+
|
18 |
+
Graph Metrics
|
19 |
+
-------------
|
20 |
+
- **Total Nodes**: 20790
|
21 |
+
- **Total Edges**: 60638
|
22 |
+
- **Root Nodes**: 5936
|
23 |
+
- **Leaf Nodes**: 11639
|
24 |
+
|
25 |
+
Knowledge coverage
|
26 |
+
------------------
|
27 |
+
- Classes: 1874
|
28 |
+
- Individuals: 0
|
29 |
+
- Properties: 13
|
30 |
+
|
31 |
+
Hierarchical metrics
|
32 |
+
--------------------
|
33 |
+
- **Maximum Depth**: 5
|
34 |
+
- **Minimum Depth**: 0
|
35 |
+
- **Average Depth**: 1.07
|
36 |
+
- **Depth Variance**: 0.72
|
37 |
+
|
38 |
+
Breadth metrics
|
39 |
+
------------------
|
40 |
+
- **Maximum Breadth**: 8034
|
41 |
+
- **Minimum Breadth**: 82
|
42 |
+
- **Average Breadth**: 3462.50
|
43 |
+
- **Breadth Variance**: 11752362.58
|
44 |
+
|
45 |
+
Dataset Statistics
|
46 |
+
------------------
|
47 |
+
Generated Benchmarks:
|
48 |
+
- **Term Types**: 0
|
49 |
+
- **Taxonomic Relations**: 5288
|
50 |
+
- **Non-taxonomic Relations**: 36
|
51 |
+
- **Average Terms per Type**: 0.00
|
52 |
+
|
53 |
+
Usage Example
|
54 |
+
-------------
|
55 |
+
.. code-block:: python
|
56 |
+
|
57 |
+
from ontolearner.ontology import PO
|
58 |
+
|
59 |
+
# Initialize and load ontology
|
60 |
+
ontology = PO()
|
61 |
+
ontology.load("path/to/ontology.owl")
|
62 |
+
|
63 |
+
# Extract datasets
|
64 |
+
data = ontology.extract()
|
65 |
+
|
66 |
+
# Access specific relations
|
67 |
+
term_types = data.term_typings
|
68 |
+
taxonomic_relations = data.type_taxonomies
|
69 |
+
non_taxonomic_relations = data.type_non_taxonomic_relations
|