The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: AttributeError Message: 'str' object has no attribute 'items' Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1663, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1620, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1067, in get_module { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in <dictcomp> config_name: DatasetInfo.from_dict(dataset_info_dict) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names}) AttributeError: 'str' object has no attribute 'items'
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Overview
The biology and life sciences domain encompasses the structured representation and categorization of knowledge related to biological entities, processes, and systems, ranging from molecular and cellular levels to complex organisms and ecosystems. This domain plays a critical role in facilitating data interoperability, integration, and retrieval across diverse biological disciplines, thereby advancing research and discovery. By providing a formalized framework for understanding biological concepts and their interrelations, it supports the development of computational models and enhances the precision of scientific communication.
Ontologies
Ontology ID | Full Name | Classes | Properties | Last Updated |
---|---|---|---|---|
BioPAX | Biological Pathways Exchange (BioPAX) | 92 | 96 | 16 April 2015 |
EFO | Experimental Factor Ontology (EFO) | 88311 | 87 | 2025-02-17 |
GO | Gene Ontology (GO) | 62046 | 9 | 2024-11-03 |
LIFO | Life Ontology (LifO) | 239 | 98 | March 11, 2018 |
MarineTLO | Marine Taxonomy and Life Ontology (MarineTLO) | 104 | 94 | 2017-01-05 |
MGED | MGED Ontology (MGED) | 233 | 121 | Feb. 9, 2007 |
MO | Microscopy Ontology (MO) | 1066 | 70 | None |
NPO | NanoParticle Ontology (NPO) | 2464 | 87 | 2013-05-31 |
PATO | Phenotype and Trait Ontology (PATO) | 13544 | 252 | 2025-02-01 |
Dataset Files
Each ontology directory contains the following files:
<ontology_id>.<format>
- The original ontology fileterm_typings.json
- A Dataset of term-to-type mappingstaxonomies.json
- Dataset of taxonomic relationsnon_taxonomic_relations.json
- Dataset of non-taxonomic relations<ontology_id>.rst
- Documentation describing the ontology
Usage
These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:
First of all, install the OntoLearner
library via PiP:
pip install ontolearner
How to load an ontology or LLM4OL Paradigm tasks datasets?
from ontolearner import BioPAX
ontology = BioPAX()
# Load an ontology.
ontology.load()
# Load (or extract) LLMs4OL Paradigm tasks datasets
data = ontology.extract()
How use the loaded dataset for LLM4OL Paradigm task settings?
from ontolearner import BioPAX, LearnerPipeline, train_test_split
ontology = BioPAX()
ontology.load()
data = ontology.extract()
# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2)
# Create a learning pipeline (for RAG-based learning)
pipeline = LearnerPipeline(
task = "term-typing", # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
retriever_id = "sentence-transformers/all-MiniLM-L6-v2",
llm_id = "mistralai/Mistral-7B-Instruct-v0.1",
hf_token = "your_huggingface_token" # Only needed for gated models
)
# Train and evaluate
results, metrics = pipeline.fit_predict_evaluate(
train_data=train_data,
test_data=test_data,
top_k=3,
test_limit=10
)
For more detailed documentation, see the
Citation
If you find our work helpful, feel free to give us a cite.
@inproceedings{babaei2023llms4ol,
title={LLMs4OL: Large language models for ontology learning},
author={Babaei Giglou, Hamed and D’Souza, Jennifer and Auer, S{\"o}ren},
booktitle={International Semantic Web Conference},
pages={408--427},
year={2023},
organization={Springer}
}
- Downloads last month
- 59