Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    AttributeError
Message:      'str' object has no attribute 'items'
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1663, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1620, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1067, in get_module
                  {
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in <dictcomp>
                  config_name: DatasetInfo.from_dict(dataset_info_dict)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict
                  return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names})
              AttributeError: 'str' object has no attribute 'items'

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

OntoLearner

Chemistry Domain Ontologies

Overview

The chemistry domain encompasses the structured representation and formalization of chemical knowledge, including entities, reactions, processes, and methodologies. It plays a critical role in knowledge representation by enabling the integration, sharing, and computational analysis of chemical data across diverse subfields such as organic, inorganic, physical, and computational chemistry. This domain facilitates the advancement of scientific research and innovation by providing a standardized framework for the precise and interoperable exchange of chemical information.

Ontologies

Ontology ID Full Name Classes Properties Last Updated
AFO Allotrope Foundation Ontology (AFO) 3871 318 2024-06-28
ChEBI Chemical Entities of Biological Interest (ChEBI) 220816 10 01/01/2025
CHEMINF Chemical Information Ontology (CHEMINF) 358 52 None
CHIRO CHEBI Integrated Role Ontology (CHIRO) 13930 15 2015-11-23
ChMO Chemical Methods Ontology (ChMO) 3202 27 2022-04-19
FIX FIX Ontology (FIX) 1163 5 2020-04-13
MassSpectrometry Mass Spectrometry Ontology (MassSpectrometry) 3636 12 12:02:2025
MOP Molecular Process Ontology (MOP) 3717 11 2022-05-11
NMRCV Nuclear Magnetic Resonance Controlled Vocabulary (NMRCV) 757 0 2017-10-19
OntoKin Chemical Kinetics Ontology (OntoKin) 83 136 08 February 2022
PROCO PROcess Chemistry Ontology (PROCO) 970 61 04-14-2022
PSIMOD Proteomics Standards Initiative (PSI) Protein Modifications Ontology (PSI-MOD) 2098 4 2022-06-13
REX Physico-chemical process ontology (REX) 552 6 2025-03-11
RXNO Reaction Ontology (RXNO) 1109 14 2021-12-16
VIBSO Vibrational Spectroscopy Ontology (VIBSO) 598 53 2024-09-23

Dataset Files

Each ontology directory contains the following files:

  1. <ontology_id>.<format> - The original ontology file
  2. term_typings.json - A Dataset of term-to-type mappings
  3. taxonomies.json - Dataset of taxonomic relations
  4. non_taxonomic_relations.json - Dataset of non-taxonomic relations
  5. <ontology_id>.rst - Documentation describing the ontology

Usage

These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:

First of all, install the OntoLearner library via PiP:

pip install ontolearner

How to load an ontology or LLM4OL Paradigm tasks datasets?

from ontolearner import AFO

ontology = AFO()

# Load an ontology.
ontology.load()  

# Load (or extract) LLMs4OL Paradigm tasks datasets
data = ontology.extract()

How use the loaded dataset for LLM4OL Paradigm task settings?

# Import core modules from the OntoLearner library
from ontolearner import AFO, LearnerPipeline, train_test_split

# Load the AFO ontology, which contains concepts related to wines, their properties, and categories
ontology = AFO()
ontology.load()  # Load entities, types, and structured term annotations from the ontology
data = ontology.extract()

# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)

# Initialize a multi-component learning pipeline (retriever + LLM)
# This configuration enables a Retrieval-Augmented Generation (RAG) setup
pipeline = LearnerPipeline(
    retriever_id='sentence-transformers/all-MiniLM-L6-v2',      # Dense retriever model for nearest neighbor search
    llm_id='Qwen/Qwen2.5-0.5B-Instruct',                        # Lightweight instruction-tuned LLM for reasoning
    hf_token='...',                                             # Hugging Face token for accessing gated models
    batch_size=32,                                              # Batch size for training/prediction if supported
    top_k=5                                                     # Number of top retrievals to include in RAG prompting
)

# Run the pipeline: training, prediction, and evaluation in one call
outputs = pipeline(
    train_data=train_data,
    test_data=test_data,
    evaluate=True,              # Compute metrics like precision, recall, and F1
    task='term-typing'          # Specifies the task
                                # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
)

# Print final evaluation metrics
print("Metrics:", outputs['metrics'])

# Print the total time taken for the full pipeline execution
print("Elapsed time:", outputs['elapsed_time'])

# Print all outputs (including predictions)
print(outputs)

For more detailed documentation, see the Documentation

Citation

If you find our work helpful, feel free to give us a cite.

@inproceedings{babaei2023llms4ol,
  title={LLMs4OL: Large language models for ontology learning},
  author={Babaei Giglou, Hamed and D’Souza, Jennifer and Auer, S{\"o}ren},
  booktitle={International Semantic Web Conference},
  pages={408--427},
  year={2023},
  organization={Springer}
}
Downloads last month
372

Collection including SciKnowOrg/ontolearner-chemistry