|
CHEBI Integrated Role Ontology (CHIRO) |
|
======================================================================================================================== |
|
|
|
Overview |
|
-------- |
|
CHEBI provides a distinct role hierarchy. Chemicals in the structural hierarchy are connected via a 'has role' relation. |
|
CHIRO provides links from these roles to useful other classes in other ontologies. |
|
This will allow direct connection between chemical structures (small molecules, drugs) and what they do. |
|
This could be formalized using 'capable of', in the same way Uberon and the Cell Ontology link structures to processes. |
|
|
|
:Domain: Chemistry |
|
:Category: Chemicals, Roles |
|
:Current Version: 2015-11-23 |
|
:Last Updated: 2015-11-23 |
|
:Creator: None |
|
:License: Creative Commons 1.0 |
|
:Format: OWL |
|
:Download: `CHEBI Integrated Role Ontology (CHIRO) Homepage <https://terminology.tib.eu/ts/ontologies/chiro>`_ |
|
|
|
Graph Metrics |
|
------------- |
|
- **Total Nodes**: 81778 |
|
- **Total Edges**: 197071 |
|
- **Root Nodes**: 14636 |
|
- **Leaf Nodes**: 50439 |
|
|
|
Knowledge coverage |
|
------------------ |
|
- Classes: 13930 |
|
- Individuals: 0 |
|
- Properties: 15 |
|
|
|
Hierarchical metrics |
|
-------------------- |
|
- **Maximum Depth**: 16 |
|
- **Minimum Depth**: 0 |
|
- **Average Depth**: 1.36 |
|
- **Depth Variance**: 1.13 |
|
|
|
Breadth metrics |
|
------------------ |
|
- **Maximum Breadth**: 34719 |
|
- **Minimum Breadth**: 2 |
|
- **Average Breadth**: 4620.24 |
|
- **Breadth Variance**: 105924794.30 |
|
|
|
Dataset Statistics |
|
------------------ |
|
Generated Benchmarks: |
|
- **Term Types**: 0 |
|
- **Taxonomic Relations**: 27299 |
|
- **Non-taxonomic Relations**: 0 |
|
- **Average Terms per Type**: 0.00 |
|
|
|
Usage Example |
|
------------- |
|
.. code-block:: python |
|
|
|
from ontolearner.ontology import CHIRO |
|
|
|
# Initialize and load ontology |
|
ontology = CHIRO() |
|
ontology.load("path/to/ontology.owl") |
|
|
|
# Extract datasets |
|
data = ontology.extract() |
|
|
|
# Access specific relations |
|
term_types = data.term_typings |
|
taxonomic_relations = data.type_taxonomies |
|
non_taxonomic_relations = data.type_non_taxonomic_relations |
|
|